Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten # Acids and Bases #### Three definitions of acid | Who | Theory: Acid= | When | |-----------|------------------------|--------| | Arrhenius | increases H+ | 1880's | | Brønsted | proton donor | 1923 | | Lowry | ditto | 1923 | | Lewis | Electron-pair acceptor | 1923 | #### **Svante August Arrhenius** (<u>February 19</u>, <u>1859</u> – <u>October 2</u>, <u>1927</u>) Swedish chemist; Nobel Prize in Chemistry, 1903 - * Arrhenius equation (activation energy) - * Greenhouse effect http://en.wikipedia.org/wiki/Arrhenius #### **Johannes Nicolaus Brønsted** (<u>February 22</u>, <u>1879-December 17</u>, <u>1947</u>) Danish physical chemist #### **Thomas Martin Lowry** (<u>October 26</u>, <u>1874</u>–<u>November 2</u>, <u>1936</u>) English organic chemist #### **Gilbert Newton Lewis** (October 23, 1875-March 23, 1946) American physical chemist ## Some Definitions - Arrhenius acids and bases - Acid: Substance that, when dissolved in water, increases the concentration of hydrogen ions (protons, H⁺). $$HCl(aq) \rightleftharpoons H^+(aq) + Cl^-(aq)$$ Base: Substance that, when dissolved in water, increases the concentration of hydroxide ions. $$NaOH(aq) \rightleftharpoons Na^{+}(aq) + OH^{-}(aq)$$ ### Some Definitions Brønsted–Lowry: must have both 1. an Acid: Proton donor $$HCl(aq) + H_2O \rightleftharpoons H_3O^+(aq) + Cl^-(aq)$$ and 2. a Base: Proton acceptor Brønsted-Lowry acids and bases are always paired. The Brønsted-Lowry acid donates a proton, while the Brønsted-Lowry base accepts it. Which is the acid and which is the base in each of these rxns? $$HCl + H_2O \rightleftharpoons \left[Cl^- \cdots H^+ \cdots H_2O\right] \rightleftharpoons H_3O^+ + Cl^-$$ $$NH_3 + H_2O \rightleftharpoons [NH_3 \cdots H^+ \cdots OH^-] \rightleftharpoons NH_4^+ + OH^-$$ A Brønsted-Lowry acid... ...must have a removable (acidic) proton. HCl, H₂O, H₂SO₄ A Brønsted-Lowry base... ...must have a pair of nonbonding electrons. NH_3 , H_2O If it can be either... ...it is amphiprotic. HCO₃ HSO₄ H_2O # What Happens When an Acid Dissolves in Water? - Water acts as a Brønsted–Lowry base and abstracts a proton (H+) from the acid. - As a result, the conjugate base of the acid and a hydronium ion are formed. Movies... # Conjugate Acids and Bases: - From the Latin word *conjugare*, meaning "to join together." - Reactions between acids and bases always yield their conjugate bases and acids. $$HNO_2 + H_2O \rightleftharpoons [NO_2^- \cdots H^+ \cdots H_2O] \rightleftharpoons NO_2^- + H_30^+$$ - Strong acids are completely dissociated in water. - Their conjugate bases are quite weak. - Weak acids only dissociate partially in water. - Their conjugate bases are weak bases. - Substances with negligible acidity do not dissociate in water. - Their conjugate bases are exceedingly strong. In any acid-base reaction, the equilibrium favors the reaction that moves the proton to the stronger base. $$HCI_{(aq)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$ H_2O is a much stronger base than Cl^- , so the equilibrium lies so far to the right K is not measured (K > 1). Acetate is a stronger base than H_2O , so the equilibrium favors the left side (K<1). The stronger base "wins" the proton. $$HC_2H_3O_2(aq) + H_2O$$ $$H_3O^+(aq) + C_2H_3O_2^-(aq)$$ ## Autoionization of Water As we have seen, water is amphoteric. In pure water, a few molecules act as bases and a few act as acids. $$H_2O(l) + H_2O(l) \rightleftharpoons OH^-(aq) + H_3O^+(aq)$$ $$H_2O(l) + H_2O(l) \rightleftharpoons [OH^- \cdots H^+ \cdots H_20] \rightleftharpoons OH^-(aq) + H_30^+(aq)$$ This process is called autoionization. ### Ion-Product Constant • The equilibrium expression for this process is $K_c = [H_3O^+] [OH^-]$ - This special equilibrium constant is referred to as the ion-product constant for water, K_w . - At 25°C, $K_w = 1.0 \times 10^{-14}$ # pH pH is defined as the negative base-10 logarithm of the hydronium ion concentration. $$pH = -log [H_3O^+]$$ # pH In pure water, $$K_w = [H_3O^+] [OH^-] = 1.0 \times 10^{-14}$$ Because in pure water [H₃O⁺] = [OH⁻], $$[H_3O^+] = (1.0 \times 10^{-14})^{1/2} = 1.0 \times 10^{-7}$$ # pH Therefore, in pure water, pH = $$-\log [H_3O^+]$$ = $-\log (1.0 \times 10^{-7}) = 7.00$ - An acid has a higher [H₃O⁺] than pure water, so its pH is <7 - A base has a lower [H₃O⁺] than pure water, so its pH is >7. | Solution Type | $[H^+](M)$ | $[OH^-](M)$ | pH Value | |----------------------|-----------------------|-----------------------|----------| | Acidic | $>1.0 \times 10^{-7}$ | $<1.0 \times 10^{-7}$ | < 7.00 | | Neutral | $=1.0 \times 10^{-7}$ | $=1.0 \times 10^{-7}$ | =7.00 | | Basic | $<1.0 \times 10^{-7}$ | $>1.0 \times 10^{-7}$ | >7.00 | # pН These are the pH values for several common substances. | | $[H^+](M)$ | pН | рОН | $[OH^-](M)$ | |---------------|--|--|--|---| | Gastric juice | $-1 (1 \times 10^{-0})$ -1×10^{-1} -1×10^{-2} -1×10^{-3} -1×10^{-4} -1×10^{-5} -1×10^{-6} -1×10^{-7} -1×10^{-9} -1×10^{-10} -1×10^{-11} -1×10^{-12} | 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0 | 14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0 | 1×10^{-14} 1×10^{-13} 1×10^{-12} 1×10^{-11} 1×10^{-9} 1×10^{-8} 1×10^{-7} 1×10^{-6} 1×10^{-5} 1×10^{-4} 1×10^{-3} 1×10^{-2} | | | | | | | | | | | | | # Other "p" Scales - The "p" in pH tells us to take the negative log of the quantity (in this case, hydronium ions). - Some similar examples are - pOH –log [OH⁻] - $-pK_w \log K_w$ ## Watch This! Because $$[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14},$$ we know that $$-\log [H_3O^+] + -\log [OH^-] = -\log K_w = 14.00$$ or, in other words, $$pH + pOH = pK_w = 14.00$$ If you know one, you know them all: ``` [H⁺] [OH⁻] pH pOH ``` # How Do We Measure pH? - Litmus paper - "Red" paper turns blue above ~pH = 8 - "Blue" paper turns red below ~pH = 5 - An indicator - Compound that changes color in solution. # How Do We Measure pH? pH meters measure the voltage in the solution # Strong Acids - You will recall that the seven strong acids are HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃, and HClO₄. - These are strong electrolytes and exist totally as ions in aqueous solution. - For the monoprotic strong acids, $$[H_3O^+] = [acid].$$ # Strong Bases - Strong bases are the soluble hydroxides, which are the alkali metal (NaOH, KOH)and heavier alkaline earth metal hydroxides (Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂). - Again, these substances dissociate completely in aqueous solution. $[OH^{-}]$ = [hydroxide added]. #### **Dissociation Constants** For a generalized acid dissociation, $$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$ the equilibrium expression is $$K_c = K_a = \frac{[H_3O^+][A^-]}{[HA]}$$ • This equilibrium constant is called the aciddissociation constant, K_a . ## **Dissociation Constants** The greater the value of K_a , the stronger the acid. | Acid | Structural
Formula | Conjugate
Base | Equilibrium Reaction | Ka | |---|-----------------------|---|--|-----------------------| | Hydrofluoric (HF) | HF | F^- | $HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$ | 6.8×10^{-4} | | Nitrous | HON==O | NO_2^- | $HNO_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$ | 4.5×10^{-4} | | (HNO ₂) Benzoic (HC ₇ H ₅ O ₂) | н-о-С- | C ₇ H ₅ O ₂ ⁻ | $HC_7H_5O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_7H_5O_2^-(aq)$ | 6.3×10^{-5} | | Acetic
(HC ₂ H ₃ O ₂) | H-0-C-C-H | $C_2H_3O_2^-$ | $HC_2H_3O_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$ | 1.8×10^{-5} | | Hypochlorous (HClO) | H0C1 | ClO ⁻ | $HClO(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + ClO^-(aq)$ | 3.0×10^{-8} | | Hydrocyanic (HCN) | H—C≡N | CN^- | $HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$ | 4.9×10^{-10} | | Phenol
(HC ₆ H ₅ O) | н-о-(| C ₆ H ₅ O ⁻ | $HC_6H_5O(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + C_6H_5O^-(aq)$ | 1.3×10^{-10} | ^{*}The proton that ionizes is shown in blue. # Calculating K_a from the pH • The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature. $$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$ $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$ We know that $$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$ # Calculating K_a from the pH $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature. To calculate K_a , we need all equilibrium concentrations. We can find $[H_3O^+]$, which is the same as $[HCOO^-]$, from the pH. $$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$ # Calculating K_a from the pH $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ pH = $-\log [H_3O^+]$ $-2.38 = \log [H_3O^+]$ $$10^{-2.38} = 10^{\log [H_3O^+]} = [H_3O^+]$$ $4.2 \times 10^{-3} = [H_3O^+] = [HCOO^-]$ $$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$ # Calculating K_a from pH $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ #### In table form: | | [HCOOH], M | [H ₃ O+], M | [HCOO ⁻], M | |-------------|-----------------------------|-------------------------|-------------------------| | Initially | 0.10 | 0 | 0 | | Change | -4.2 × 10 ⁻³ | +4.2 × 10 ⁻³ | +4.2 × 10 ⁻³ | | At | $0.10 - 4.2 \times 10^{-3}$ | 4.2 × 10 ⁻³ | 4.2 × 10 ^{- 3} | | Equilibrium | = 0.0958 = 0.10 | | | # Calculating K_a from pH $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ $$K_a = \frac{[4.2 \times 10^{-3}] [4.2 \times 10^{-3}]}{[0.10]}$$ $$= 1.8 \times 10^{-4}$$ $$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$ # Calculating Percent Ionization $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ $$Percent\ ionization = \frac{amount\ ionized}{total\ in\ solution} \times 100$$ $$Percent\ ionization = \frac{[A^-]}{[HA] + [A^-]} \times 100$$ In the example: $$[A^{-}]_{eq} = [H_{3}O^{+}]_{eq} = 4.2 \times 10^{-3} \text{ M}$$ $[A^{-}]_{eq} + [HCOOH]_{eq} = [HCOOH]_{initial} = 0.10 \text{ M}$ # Calculating Percent Ionization $$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$ Percent Ionization = $$\frac{4.2 \times 10^{-3}}{0.10} \times 100$$ Calculate the pH of a 0.30 M solution of acetic acid, $C_2H_3O_2H$, at 25°C. $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ K_a for acetic acid at 25°C is 1.8×10^{-5} . Is acetic acid more or less ionized than formic acid $(K_a=1.8 \times 10^{-4})$? $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ The equilibrium constant expression is: $$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$ $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ #### Use the ICE table: | | [C ₂ H ₃ O ₂], <i>M</i> | [H ₃ O+], <i>M</i> | [C ₂ H ₃ O ₂ ⁻], <i>M</i> | |-------------|---|-------------------------------|--| | Initial | 0.30 | 0 | 0 | | Change | -X | + <i>X</i> | + <i>X</i> | | Equilibrium | 0.30 - x | X | X | $$K_a = \frac{x^2}{0.30 - x}$$ $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ #### Use the ICE table: | | [C ₂ H ₃ O ₂], <i>M</i> | [H ₃ O+], <i>M</i> | [C ₂ H ₃ O ₂ ⁻], <i>M</i> | |-------------|---|-------------------------------|--| | Initial | 0.30 | 0 | 0 | | Change | -X | + <i>X</i> | + <i>X</i> | | Equilibrium | 0.30 – <i>x</i> | X | X | Simplify: how big is x relative to 0.30? $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ #### Use the ICE table: | | [C ₂ H ₃ O ₂], <i>M</i> | [H ₃ O+], <i>M</i> | [C ₂ H ₃ O ₂ ⁻], M | |-------------|---|-------------------------------|---| | Initial | 0.30 | 0 | 0 | | Change | -x | + <i>X</i> | + <i>X</i> | | Equilibrium | $0.30 - x \approx 0.30$ | X | X | Simplify: how big is x relative to 0.30? $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ Now, $$K_a = \frac{x^2}{0.30 - x} \simeq \frac{x^2}{0.30}$$ $$(1.8 \times 10^{-5}) (0.30) = x^2$$ $5.4 \times 10^{-6} = x^2$ $2.3 \times 10^{-3} = x$ Check: is approximation ok? $$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$ pH = $$-\log [H_3O^+]$$ = $-\log (2.3 \times 10^{-3})$ = 2.64 ## Polyprotic Acids Have more than one acidic proton. If the difference between the K_a for the first dissociation and subsequent K_a values is 10^3 or more, the pH generally depends *only* on the first dissociation. | Ascorbic $H_2C_6H_6O_6$ 8.0×10^{-5} 1.6×10^{-12} Carbonic H_2CO_3 4.3×10^{-7} 5.6×10^{-11} Citric $H_3C_6H_5O_7$ 7.4×10^{-4} 1.7×10^{-5} 4.0×10^{-7} Oxalic $H_2C_2O_4$ 5.9×10^{-2} 6.4×10^{-5} Phosphoric H_3PO_4 7.5×10^{-3} 6.2×10^{-8} 4.2×10^{-13} Sulfurous H_2SO_3 1.7×10^{-2} 6.4×10^{-8} 4.2×10^{-13} | Name | Formula | K_{a1} | K_{a2} | K_{a3} | |---|--|--|---|---|----------------------| | Tartaric $H_2C_4H_4O_6$ 1.0×10^{-3} 4.6×10^{-5} | Ascorbic Carbonic Citric Oxalic Phosphoric | H ₂ C ₆ H ₆ O ₆
H ₂ CO ₃
H ₃ C ₆ H ₅ O ₇
H ₂ C ₂ O ₄
H ₃ PO ₄
H ₂ SO ₃
H ₂ SO ₄ | 8.0×10^{-5} 4.3×10^{-7} 7.4×10^{-4} 5.9×10^{-2} 7.5×10^{-3} 1.7×10^{-2} Large | $ \begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array} $ | 4.0×10^{-7} | #### Weak Bases $$\ddot{B} + H_2O \rightleftharpoons HB^+ + OH^-$$ Bases react with water to produce hydroxide ion. #### Weak Bases $$\ddot{B} + H_2O \rightleftharpoons HB^+ + OH^-$$ The equilibrium constant expression for this reaction is $$K_c = K_b = \frac{[HB^+][OH^-]}{[B]}$$ where K_h is the base-dissociation constant. # prs here #### Weak Bases #### K_b can be used to find [OH⁻] and, through it, pH. | Base | Lewis
Structure | Conjugate
Acid | Equilibrium Reaction | K_b | |---|---------------------|--|---|----------------------| | Ammonia (NH ₃) | н—й—н

 | $\mathrm{NH_4}^+$ | $NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$ | 1.8×10^{-5} | | Pyridine (C ₅ H ₅ N) | N: | $C_5H_5NH^+$ | $C_5H_5N + H_2O \Longrightarrow C_5H_5NH^+ + OH^-$ | 1.7×10^{-9} | | Hydroxylamine
(H ₂ NOH) | н—й—ён
н | H_3NOH^+ | $H_2NOH + H_2O \Longrightarrow H_3NOH^+ + OH^-$ | 1.1×10^{-8} | | Methylamine
(NH ₂ CH ₃) | H—N—CH ₃ | NH ₃ CH ₃ ⁺ | $NH_2CH_3 + H_2O \Longrightarrow NH_3CH_3^+ + OH^-$ | 4.4×10^{-4} | | Hydrosulfide ion
(HS ⁻) | [H—Ä:] | H ₂ S | $HS^- + H_2O \Longrightarrow H_2S + OH^-$ | 1.8×10^{-7} | | Carbonate ion (CO ₃ ²⁻) | :ö: | HCO ₃ ⁻ | $CO_3^{2-} + H_2O \Longrightarrow HCO_3^- + OH^-$ | 1.8×10^{-4} | | Hypochlorite ion
(ClO ⁻) | [:¤-¤:]- | HClO | $CIO^- + H_2O \Longrightarrow HCIO + OH^-$ | 3.3×10^{-7} | What is the pH of a 0.15 M solution of NH₃? $$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$ $$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]} = 1.8 \times 10^{-5}$$ Tabulate the data. | | $\ddot{N}H_3 + H_2O$ | $\rightleftharpoons NH_4^+$ | $+ OH^-$ | |-------------|-------------------------|-----------------------------|----------| | Initial | 0.15 | 0 | 0 | | Equilibrium | $0.15 - x \approx 0.15$ | X | X | Simplify: how big is x relative to 0.15? $$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$ $$1.8 \times 10^{-5} = \frac{(x)^2}{(0.15)}$$ $$(1.8 \times 10^{-5}) (0.15) = x^2$$ $$2.7 \times 10^{-6} = x^2$$ $$1.6 \times 10^{-3} = x$$ Check: is approximation ok? $$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$ Therefore, $$[OH^{-}] = 1.6 \times 10^{-3} M$$ $pOH = -log (1.6 \times 10^{-3})$ $= 2.80$ $pH = 14.00 - 2.80$ $= 11.20$ K_a and K_b are linked: $$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \quad K_b$$ $$NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ K_a$$ Combined reaction = ? K_a and K_b are linked: $$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \quad K_b$$ $$NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ K_a$$ Combined reaction = ? $$2H_2O \rightleftharpoons H_3O^+ + OH^- \quad K_a \times K_b = K_w$$ # K_a and K_b | Acid | K_a | Base | K_b | |-------------------|-----------------------|---------------|-----------------------| | HNO_3 | (Strong acid) | NO_3^- | (Negligible basicity) | | HF | 6.8×10^{-4} | F^- | 1.5×10^{-11} | | $HC_2H_3O_2$ | 1.8×10^{-5} | $C_2H_3O_2^-$ | 5.6×10^{-10} | | H_2CO_3 | 4.3×10^{-7} | HCO_3^- | 2.3×10^{-8} | | $\mathrm{NH_4}^+$ | 5.6×10^{-10} | NH_3 | 1.8×10^{-5} | | HCO_3^- | 5.6×10^{-11} | CO_3^{2-} | 1.8×10^{-4} | | OH ⁻ | (Negligible acidity) | O^{2-} | (Strong base) | K_a and K_b are related in this way: $$K_a \times K_b = K_w$$ Therefore, if you know one of them, you can calculate the other. #### **PRACTICE EXERCISES** 1. Niacin, one of the B vitamins, has the following molecular structure: A 0.020 M solution of niacin has a pH of 3.26. (a) What percentage of the acid is ionized in this solution? (b) What is the acid-dissociation constant, K_a , for niacin? **2.** What is the pH of (a) a 0.028 M solution of NaOH, (b) a 0.0011 M solution of Ca(OH)₂? What percentage of the bases are ionized? **3.** Calculate the percentage of HF molecules ionized in (a) a 0.10 M HF solution, (b) a 0.010 M HF solution. Ka for HF is 6.8×10^{-4} . #### Reactions of Anions with Water - Anions are bases. - As such, they can react with water in a hydrolysis reaction to form OH⁻ and the conjugate acid: $$X^{-}(aq) + H_2O(I)$$ $HX(aq) + OH^{-}(aq)$ #### Reactions of Cations with Water electron density Cations with acidic protons (like NH₄⁺) lower the pH of a solution by releasing H⁺. Most metal cations (like Al^{3+}) that are hydrated in solution also lower the pH of the solution; they act by associating with H_2O and making it release H^+ . #### Reactions of Cations with Water - Attraction between nonbonding electrons on oxygen and the metal causes a shift of the electron density in water. - This makes the O-H bond more polar and the water more acidic. - Greater charge and smaller size make a cation more acidic. #### **Effect of Cations and Anions** - 1. An anion that is the conjugate base of a strong acid will not affect the pH. - An anion that is the conjugate base of a weak acid will increase the pH. - 3. A cation that is the conjugate acid of a weak base will decrease the pH. #### **Effect of Cations and Anions** - Cations of the strong Arrhenius bases will not affect the pH. - Other metal ions will cause a decrease in pH. - 6. When a solution contains both the conjugate base of a weak acid and the conjugate acid of a weak base, the affect on pH depends on the K_a and K_b values. | What effect on pH? | Why? | |--|--| | An anion that is the conjugate base of a strong acid does not affect pH. | = very weak base | | An anion that is the conjugate base of a weak acid increases pH. | = strong base | | A cation that is the conjugate acid of a weak base decreases pH. | = strong acid | | Cations of the strong Arrhenius bases (Na ⁺ , Ca ²⁺) do not affect pH. | = <i>very</i> weak acid (not really acidic at all) | | Other metal ions cause a decrease in pH. | = moderate bases
(cations) | | Weak acid + weak base | Depends on K _a and K _b | | GROUP | | | | 돺 | A | | |--|----|----|----|----|-----|-----------------| | | 4A | 5A | 6A | 7A | eng | ngth | | | | | | | | base strength | | Period 3 SiH ₄ PH ₃ H ₂ S HCl Weak acid Strong acid | | | | | | Increasing base | | Increasing acid strength Increasing base strength | | | | | | | - The more polar the H-X bond and/or the weaker the H-X bond, the more acidic the compound. - Acidity increases from left to right across a row and from top to bottom down a group. In oxyacids, in which an OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid. | Acid | EN of Y | K_a | |------|---------|-----------------------| | HClO | 3.0 | 3.0×10^{-8} | | HBrO | 2.8 | 2.5×10^{-9} | | HIO | 2.5 | 2.3×10^{-11} | For a series of oxyacids, acidity increases with the number of oxygens. Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic. #### Lewis Acids - Lewis acids are defined as electron-pair acceptors. - Atoms with an empty valence orbital can be Lewis acids. - A compound with no H's can be a Lewis acid. #### **Lewis Bases** - Lewis bases are defined as electron-pair donors. - Anything that is a Brønsted-Lowry base is also a Lewis base. (B-L bases also have a lone pair.) - Lewis bases can interact with things other than protons. #### **PRACTICE EXERCISES** 1. Niacin, one of the B vitamins, has the following molecular structure: A 0.020 M solution of niacin has a pH of 3.26. - (a) What percentage of the acid is ionized in this solution? - (b) What is the acid-dissociation constant, K_a , for niacin? - **2.** Calculate the percentage of HF molecules ionized in (a) a 0.10 M HF solution, (b) a 0.010 M HF solution. Ka for HF is 6.8×10^{-4} . **3.** A solution of acetic acid is 2% ionized at 25°C. $K_a=1.8 \times 10^{-5}$. What was the original concentration of the acid?