Chemistry, The Central Science, 10th edition
Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Acids and Bases

Three definitions of acid

Who	Theory: Acid=	When
Arrhenius	increases H+	1880's
Brønsted	proton donor	1923
Lowry	ditto	1923
Lewis	Electron-pair acceptor	1923

Svante August Arrhenius

(<u>February 19</u>, <u>1859</u> – <u>October 2</u>, <u>1927</u>)

Swedish chemist; Nobel Prize in Chemistry, 1903

- * Arrhenius equation (activation energy)
- * Greenhouse effect http://en.wikipedia.org/wiki/Arrhenius

Johannes Nicolaus Brønsted

(<u>February 22</u>, <u>1879-December 17</u>, <u>1947</u>)
Danish physical chemist

Thomas Martin Lowry

(<u>October 26</u>, <u>1874</u>–<u>November 2</u>, <u>1936</u>)

English organic chemist

Gilbert Newton Lewis

(October 23, 1875-March 23, 1946)

American physical chemist

Some Definitions

- Arrhenius acids and bases
 - Acid: Substance that, when dissolved in water, increases the concentration of hydrogen ions (protons, H⁺).

$$HCl(aq) \rightleftharpoons H^+(aq) + Cl^-(aq)$$

 Base: Substance that, when dissolved in water, increases the concentration of hydroxide ions.

$$NaOH(aq) \rightleftharpoons Na^{+}(aq) + OH^{-}(aq)$$

Some Definitions

Brønsted–Lowry: must have both

1. an Acid: Proton donor

$$HCl(aq) + H_2O \rightleftharpoons H_3O^+(aq) + Cl^-(aq)$$

and

2. a Base: Proton acceptor

Brønsted-Lowry acids and bases are always paired.

The Brønsted-Lowry acid donates a proton,

while the Brønsted-Lowry base accepts it.

Which is the acid and which is the base in each of these rxns?

$$HCl + H_2O \rightleftharpoons \left[Cl^- \cdots H^+ \cdots H_2O\right] \rightleftharpoons H_3O^+ + Cl^-$$

$$NH_3 + H_2O \rightleftharpoons [NH_3 \cdots H^+ \cdots OH^-] \rightleftharpoons NH_4^+ + OH^-$$

A Brønsted-Lowry acid...

...must have a removable (acidic) proton.

HCl, H₂O, H₂SO₄

A Brønsted-Lowry base...

...must have a pair of nonbonding electrons.

 NH_3 , H_2O

If it can be either...

...it is amphiprotic.

HCO₃

HSO₄

 H_2O

What Happens When an Acid Dissolves in Water?

- Water acts as a
 Brønsted–Lowry base
 and abstracts a proton
 (H+) from the acid.
- As a result, the conjugate base of the acid and a hydronium ion are formed.

Movies...

Conjugate Acids and Bases:

- From the Latin word *conjugare*, meaning "to join together."
- Reactions between acids and bases always yield their conjugate bases and acids.

$$HNO_2 + H_2O \rightleftharpoons [NO_2^- \cdots H^+ \cdots H_2O] \rightleftharpoons NO_2^- + H_30^+$$

- Strong acids are completely dissociated in water.
 - Their conjugate bases are quite weak.
- Weak acids only dissociate partially in water.
 - Their conjugate bases are weak bases.

- Substances with negligible acidity do not dissociate in water.
 - Their conjugate bases are exceedingly strong.

In any acid-base reaction, the equilibrium favors the reaction that moves the proton to the stronger base.

$$HCI_{(aq)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

 H_2O is a much stronger base than Cl^- , so the equilibrium lies so far to the right K is not measured (K > 1).

Acetate is a stronger base than H_2O , so the equilibrium favors the left side (K<1).

The stronger base "wins" the proton.

$$HC_2H_3O_2(aq) + H_2O$$

$$H_3O^+(aq) + C_2H_3O_2^-(aq)$$

Autoionization of Water

As we have seen, water is amphoteric.

 In pure water, a few molecules act as bases and a few act as acids.

$$H_2O(l) + H_2O(l) \rightleftharpoons OH^-(aq) + H_3O^+(aq)$$

$$H_2O(l) + H_2O(l) \rightleftharpoons [OH^- \cdots H^+ \cdots H_20] \rightleftharpoons OH^-(aq) + H_30^+(aq)$$

This process is called autoionization.

Ion-Product Constant

• The equilibrium expression for this process is $K_c = [H_3O^+] [OH^-]$

- This special equilibrium constant is referred to as the ion-product constant for water, K_w .
- At 25°C, $K_w = 1.0 \times 10^{-14}$

pH

pH is defined as the negative base-10 logarithm of the hydronium ion concentration.

$$pH = -log [H_3O^+]$$

pH

In pure water,

$$K_w = [H_3O^+] [OH^-] = 1.0 \times 10^{-14}$$

Because in pure water [H₃O⁺] = [OH⁻],

$$[H_3O^+] = (1.0 \times 10^{-14})^{1/2} = 1.0 \times 10^{-7}$$

pH

Therefore, in pure water,

pH =
$$-\log [H_3O^+]$$

= $-\log (1.0 \times 10^{-7}) = 7.00$

- An acid has a higher [H₃O⁺] than pure water, so its pH is <7
- A base has a lower [H₃O⁺] than pure water, so its pH is >7.

Solution Type	$[H^+](M)$	$[OH^-](M)$	pH Value
Acidic	$>1.0 \times 10^{-7}$	$<1.0 \times 10^{-7}$	< 7.00
Neutral	$=1.0 \times 10^{-7}$	$=1.0 \times 10^{-7}$	=7.00
Basic	$<1.0 \times 10^{-7}$	$>1.0 \times 10^{-7}$	>7.00

pН

These are the pH values for several common substances.

	$[H^+](M)$	pН	рОН	$[OH^-](M)$
Gastric juice	$-1 (1 \times 10^{-0})$ -1×10^{-1} -1×10^{-2} -1×10^{-3} -1×10^{-4} -1×10^{-5} -1×10^{-6} -1×10^{-7} -1×10^{-9} -1×10^{-10} -1×10^{-11} -1×10^{-12}	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0	1×10^{-14} 1×10^{-13} 1×10^{-12} 1×10^{-11} 1×10^{-9} 1×10^{-8} 1×10^{-7} 1×10^{-6} 1×10^{-5} 1×10^{-4} 1×10^{-3} 1×10^{-2}

Other "p" Scales

- The "p" in pH tells us to take the negative log of the quantity (in this case, hydronium ions).
- Some similar examples are
 - pOH –log [OH⁻]
 - $-pK_w \log K_w$

Watch This!

Because

$$[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14},$$

we know that

$$-\log [H_3O^+] + -\log [OH^-] = -\log K_w = 14.00$$

or, in other words,

$$pH + pOH = pK_w = 14.00$$

If you know one, you know them all:

```
[H<sup>+</sup>]
[OH<sup>-</sup>]
pH
pOH
```

How Do We Measure pH?

- Litmus paper
 - "Red" paper turns blue above ~pH = 8
 - "Blue" paper turns red below ~pH = 5
- An indicator
 - Compound that changes color in solution.

How Do We Measure pH?

pH meters
measure the voltage in
the solution

Strong Acids

- You will recall that the seven strong acids are HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃, and HClO₄.
- These are strong electrolytes and exist totally as ions in aqueous solution.
- For the monoprotic strong acids,

$$[H_3O^+] = [acid].$$

Strong Bases

- Strong bases are the soluble hydroxides, which are the alkali metal (NaOH, KOH)and heavier alkaline earth metal hydroxides (Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂).
- Again, these substances dissociate completely in aqueous solution.

 $[OH^{-}]$ = [hydroxide added].

Dissociation Constants

For a generalized acid dissociation,

$$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

the equilibrium expression is

$$K_c = K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

• This equilibrium constant is called the aciddissociation constant, K_a .

Dissociation Constants

The greater the value of K_a , the stronger the acid.

Acid	Structural Formula	Conjugate Base	Equilibrium Reaction	Ka
Hydrofluoric (HF)	HF	F^-	$HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$	6.8×10^{-4}
Nitrous	HON==O	NO_2^-	$HNO_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$	4.5×10^{-4}
(HNO ₂) Benzoic (HC ₇ H ₅ O ₂)	н-о-С-	C ₇ H ₅ O ₂ ⁻	$HC_7H_5O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_7H_5O_2^-(aq)$	6.3×10^{-5}
Acetic (HC ₂ H ₃ O ₂)	H-0-C-C-H	$C_2H_3O_2^-$	$HC_2H_3O_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$	1.8×10^{-5}
Hypochlorous (HClO)	H0C1	ClO ⁻	$HClO(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + ClO^-(aq)$	3.0×10^{-8}
Hydrocyanic (HCN)	H—C≡N	CN^-	$HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$	4.9×10^{-10}
Phenol (HC ₆ H ₅ O)	н-о-(C ₆ H ₅ O ⁻	$HC_6H_5O(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + C_6H_5O^-(aq)$	1.3×10^{-10}

^{*}The proton that ionizes is shown in blue.

Calculating K_a from the pH

• The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature.

$$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

 $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$

We know that

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating K_a from the pH

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

The pH of a 0.10 M solution of formic acid, HCOOH, at 25°C is 2.38. Calculate K_a for formic acid at this temperature.

To calculate K_a , we need all equilibrium concentrations.

We can find $[H_3O^+]$, which is the same as $[HCOO^-]$, from the pH.

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating K_a from the pH

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

pH = $-\log [H_3O^+]$
 $-2.38 = \log [H_3O^+]$

$$10^{-2.38} = 10^{\log [H_3O^+]} = [H_3O^+]$$

 $4.2 \times 10^{-3} = [H_3O^+] = [HCOO^-]$

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating K_a from pH

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

In table form:

	[HCOOH], M	[H ₃ O+], M	[HCOO ⁻], M
Initially	0.10	0	0
Change	-4.2 × 10 ⁻³	+4.2 × 10 ⁻³	+4.2 × 10 ⁻³
At	$0.10 - 4.2 \times 10^{-3}$	4.2 × 10 ⁻³	4.2 × 10 ^{- 3}
Equilibrium	= 0.0958 = 0.10		

Calculating K_a from pH

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

$$K_a = \frac{[4.2 \times 10^{-3}] [4.2 \times 10^{-3}]}{[0.10]}$$

$$= 1.8 \times 10^{-4}$$

$$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

Calculating Percent Ionization

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

$$Percent\ ionization = \frac{amount\ ionized}{total\ in\ solution} \times 100$$

$$Percent\ ionization = \frac{[A^-]}{[HA] + [A^-]} \times 100$$

In the example:

$$[A^{-}]_{eq} = [H_{3}O^{+}]_{eq} = 4.2 \times 10^{-3} \text{ M}$$

 $[A^{-}]_{eq} + [HCOOH]_{eq} = [HCOOH]_{initial} = 0.10 \text{ M}$

Calculating Percent Ionization

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$

Percent Ionization =
$$\frac{4.2 \times 10^{-3}}{0.10} \times 100$$

Calculate the pH of a 0.30 M solution of acetic acid, $C_2H_3O_2H$, at 25°C.

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

 K_a for acetic acid at 25°C is 1.8×10^{-5} .

Is acetic acid more or less ionized than formic acid $(K_a=1.8 \times 10^{-4})$?

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

The equilibrium constant expression is:

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Use the ICE table:

	[C ₂ H ₃ O ₂], <i>M</i>	[H ₃ O+], <i>M</i>	[C ₂ H ₃ O ₂ ⁻], <i>M</i>
Initial	0.30	0	0
Change	-X	+ <i>X</i>	+ <i>X</i>
Equilibrium	0.30 - x	X	X

$$K_a = \frac{x^2}{0.30 - x}$$

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Use the ICE table:

	[C ₂ H ₃ O ₂], <i>M</i>	[H ₃ O+], <i>M</i>	[C ₂ H ₃ O ₂ ⁻], <i>M</i>
Initial	0.30	0	0
Change	-X	+ <i>X</i>	+ <i>X</i>
Equilibrium	0.30 – <i>x</i>	X	X

Simplify: how big is x relative to 0.30?

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Use the ICE table:

	[C ₂ H ₃ O ₂], <i>M</i>	[H ₃ O+], <i>M</i>	[C ₂ H ₃ O ₂ ⁻], M
Initial	0.30	0	0
Change	-x	+ <i>X</i>	+ <i>X</i>
Equilibrium	$0.30 - x \approx 0.30$	X	X

Simplify: how big is x relative to 0.30?

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Now,

$$K_a = \frac{x^2}{0.30 - x} \simeq \frac{x^2}{0.30}$$

$$(1.8 \times 10^{-5}) (0.30) = x^2$$

 $5.4 \times 10^{-6} = x^2$
 $2.3 \times 10^{-3} = x$

Check: is approximation ok?

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

pH =
$$-\log [H_3O^+]$$

= $-\log (2.3 \times 10^{-3})$
= 2.64

Polyprotic Acids

Have more than one acidic proton.

If the difference between the K_a for the first dissociation and subsequent K_a values is 10^3 or more, the pH generally depends *only* on the first dissociation.

Ascorbic $H_2C_6H_6O_6$ 8.0×10^{-5} 1.6×10^{-12} Carbonic H_2CO_3 4.3×10^{-7} 5.6×10^{-11} Citric $H_3C_6H_5O_7$ 7.4×10^{-4} 1.7×10^{-5} 4.0×10^{-7} Oxalic $H_2C_2O_4$ 5.9×10^{-2} 6.4×10^{-5} Phosphoric H_3PO_4 7.5×10^{-3} 6.2×10^{-8} 4.2×10^{-13} Sulfurous H_2SO_3 1.7×10^{-2} 6.4×10^{-8} 4.2×10^{-13}	Name	Formula	K_{a1}	K_{a2}	K_{a3}
Tartaric $H_2C_4H_4O_6$ 1.0×10^{-3} 4.6×10^{-5}	Ascorbic Carbonic Citric Oxalic Phosphoric	H ₂ C ₆ H ₆ O ₆ H ₂ CO ₃ H ₃ C ₆ H ₅ O ₇ H ₂ C ₂ O ₄ H ₃ PO ₄ H ₂ SO ₃ H ₂ SO ₄	8.0×10^{-5} 4.3×10^{-7} 7.4×10^{-4} 5.9×10^{-2} 7.5×10^{-3} 1.7×10^{-2} Large	$ \begin{array}{c} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array} $	4.0×10^{-7}

Weak Bases

$$\ddot{B} + H_2O \rightleftharpoons HB^+ + OH^-$$

Bases react with water to produce hydroxide ion.

Weak Bases

$$\ddot{B} + H_2O \rightleftharpoons HB^+ + OH^-$$

The equilibrium constant expression for this reaction is

$$K_c = K_b = \frac{[HB^+][OH^-]}{[B]}$$

where K_h is the base-dissociation constant.

prs here

Weak Bases

K_b can be used to find [OH⁻] and, through it, pH.

Base	Lewis Structure	Conjugate Acid	Equilibrium Reaction	K_b
Ammonia (NH ₃)	н—й—н 	$\mathrm{NH_4}^+$	$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$	1.8×10^{-5}
Pyridine (C ₅ H ₅ N)	N:	$C_5H_5NH^+$	$C_5H_5N + H_2O \Longrightarrow C_5H_5NH^+ + OH^-$	1.7×10^{-9}
Hydroxylamine (H ₂ NOH)	н—й—ён н	H_3NOH^+	$H_2NOH + H_2O \Longrightarrow H_3NOH^+ + OH^-$	1.1×10^{-8}
Methylamine (NH ₂ CH ₃)	H—N—CH ₃	NH ₃ CH ₃ ⁺	$NH_2CH_3 + H_2O \Longrightarrow NH_3CH_3^+ + OH^-$	4.4×10^{-4}
Hydrosulfide ion (HS ⁻)	[H—Ä:]	H ₂ S	$HS^- + H_2O \Longrightarrow H_2S + OH^-$	1.8×10^{-7}
Carbonate ion (CO ₃ ²⁻)	:ö:	HCO ₃ ⁻	$CO_3^{2-} + H_2O \Longrightarrow HCO_3^- + OH^-$	1.8×10^{-4}
Hypochlorite ion (ClO ⁻)	[:¤-¤:]-	HClO	$CIO^- + H_2O \Longrightarrow HCIO + OH^-$	3.3×10^{-7}

What is the pH of a 0.15 M solution of NH₃?

$$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]} = 1.8 \times 10^{-5}$$

Tabulate the data.

	$\ddot{N}H_3 + H_2O$	$\rightleftharpoons NH_4^+$	$+ OH^-$
Initial	0.15	0	0
Equilibrium	$0.15 - x \approx 0.15$	X	X

Simplify: how big is x relative to 0.15?

$$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

$$1.8 \times 10^{-5} = \frac{(x)^2}{(0.15)}$$

$$(1.8 \times 10^{-5}) (0.15) = x^2$$

$$2.7 \times 10^{-6} = x^2$$

$$1.6 \times 10^{-3} = x$$

Check: is approximation ok?

$$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

Therefore,

$$[OH^{-}] = 1.6 \times 10^{-3} M$$

 $pOH = -log (1.6 \times 10^{-3})$
 $= 2.80$
 $pH = 14.00 - 2.80$
 $= 11.20$

K_a and K_b are linked:

$$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \quad K_b$$

$$NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ K_a$$

Combined reaction = ?

K_a and K_b are linked:

$$\ddot{N}H_3 + H_2O \rightleftharpoons NH_4^+ + OH^- \quad K_b$$

$$NH_4^+ + H_2O \rightleftharpoons \ddot{N}H_3 + H_3O^+ K_a$$

Combined reaction = ?

$$2H_2O \rightleftharpoons H_3O^+ + OH^- \quad K_a \times K_b = K_w$$

K_a and K_b

Acid	K_a	Base	K_b
HNO_3	(Strong acid)	NO_3^-	(Negligible basicity)
HF	6.8×10^{-4}	F^-	1.5×10^{-11}
$HC_2H_3O_2$	1.8×10^{-5}	$C_2H_3O_2^-$	5.6×10^{-10}
H_2CO_3	4.3×10^{-7}	HCO_3^-	2.3×10^{-8}
$\mathrm{NH_4}^+$	5.6×10^{-10}	NH_3	1.8×10^{-5}
HCO_3^-	5.6×10^{-11}	CO_3^{2-}	1.8×10^{-4}
OH ⁻	(Negligible acidity)	O^{2-}	(Strong base)

 K_a and K_b are related in this way:

$$K_a \times K_b = K_w$$

Therefore, if you know one of them, you can calculate the other.

PRACTICE EXERCISES

1. Niacin, one of the B vitamins, has the following molecular structure:

A 0.020 M solution of niacin has a pH of 3.26. (a) What percentage of the acid is ionized in this solution? (b) What is the acid-dissociation constant, K_a , for niacin?

2. What is the pH of (a) a 0.028 M solution of NaOH, (b) a 0.0011 M solution of Ca(OH)₂? What percentage of the bases are ionized?

3. Calculate the percentage of HF molecules ionized in (a) a 0.10 M HF solution, (b) a 0.010 M HF solution. Ka for HF is 6.8×10^{-4} .

Reactions of Anions with Water

- Anions are bases.
- As such, they can react with water in a hydrolysis reaction to form OH⁻ and the conjugate acid:

$$X^{-}(aq) + H_2O(I)$$

 $HX(aq) + OH^{-}(aq)$

Reactions of Cations with Water

electron density

 Cations with acidic protons (like NH₄⁺) lower the pH of a solution by releasing H⁺.

Most metal cations (like Al^{3+}) that are hydrated in solution also lower the pH of the solution; they act by associating with H_2O and making it release H^+ .

Reactions of Cations with Water

- Attraction between nonbonding electrons on oxygen and the metal causes a shift of the electron density in water.
- This makes the O-H bond more polar and the water more acidic.
- Greater charge and smaller size make a cation more acidic.

Effect of Cations and Anions

- 1. An anion that is the conjugate base of a strong acid will not affect the pH.
- An anion that is the conjugate base of a weak acid will increase the pH.
- 3. A cation that is the conjugate acid of a weak base will decrease the pH.

Effect of Cations and Anions

- Cations of the strong
 Arrhenius bases will not affect the pH.
- Other metal ions will cause a decrease in pH.
- 6. When a solution contains both the conjugate base of a weak acid and the conjugate acid of a weak base, the affect on pH depends on the K_a and K_b values.

What effect on pH?	Why?
An anion that is the conjugate base of a strong acid does not affect pH.	= very weak base
An anion that is the conjugate base of a weak acid increases pH.	= strong base
A cation that is the conjugate acid of a weak base decreases pH.	= strong acid
Cations of the strong Arrhenius bases (Na ⁺ , Ca ²⁺) do not affect pH.	= <i>very</i> weak acid (not really acidic at all)
Other metal ions cause a decrease in pH.	= moderate bases (cations)
Weak acid + weak base	Depends on K _a and K _b

GROUP				돺	A	
	4A	5A	6A	7A	eng	ngth
						base strength
Period 3 SiH ₄ PH ₃ H ₂ S HCl Weak acid Strong acid						Increasing base
Increasing acid strength Increasing base strength						

- The more polar the H-X bond and/or the weaker the H-X bond, the more acidic the compound.
- Acidity increases from left to right across a row and from top to bottom down a group.

In oxyacids, in which an OH is bonded to another atom, Y,

the more electronegative Y is, the more acidic the acid.

Acid	EN of Y	K_a
HClO	3.0	3.0×10^{-8}
HBrO	2.8	2.5×10^{-9}
HIO	2.5	2.3×10^{-11}

For a series of oxyacids, acidity increases with the number of oxygens.

Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic.

Lewis Acids

- Lewis acids are defined as electron-pair acceptors.
- Atoms with an empty valence orbital can be Lewis acids.
- A compound with no H's can be a Lewis acid.

Lewis Bases

- Lewis bases are defined as electron-pair donors.
- Anything that is a Brønsted-Lowry base is also a Lewis base. (B-L bases also have a lone pair.)
- Lewis bases can interact with things other than protons.

PRACTICE EXERCISES

1. Niacin, one of the B vitamins, has the following molecular structure:

A 0.020 M solution of niacin has a pH of 3.26.

- (a) What percentage of the acid is ionized in this solution?
- (b) What is the acid-dissociation constant, K_a , for niacin?
- **2.** Calculate the percentage of HF molecules ionized in (a) a 0.10 M HF solution, (b) a 0.010 M HF solution. Ka for HF is 6.8×10^{-4} .

3. A solution of acetic acid is 2% ionized at 25°C. $K_a=1.8 \times 10^{-5}$. What was the original concentration of the acid?