
Computer Programming

Basic Control Flow -

Loops

Adapted from C++ for Everyone and Big C++ by Cay Horstmann, John

Wiley & Sons

2

 To learn about the three types of loops:

 while

 for

 do

 To avoid infinite loops and off-by-one errors

 To understand nested loops and sentinel.

Objectives

3

 A loop is a statement that is used to:

execute one or more statements

repeatedly until a goal is reached.

Sometimes these one-or-more statements

will not be executed at all

—if that’s the way to reach the goal

What Is the Purpose of a Loop?

4

C++ has these three looping statements:

while

for

do

The Three Loops in C++

5

The while Loop

 The condition is some kind of test
(the same as it was in the if statement in Chap. 3)

while (condition)

{

 statements

}

6

The while Loop

 The statements are repeatedly executed
until the condition is false

while (condition)

{

 statements

}

7

The while Loop

1.0 START
2.0 Read input from user, countDown.
3.0 IF the countDown is more than 0 THEN

 3.1 Display *
 3.2 Decrement countDown by 1

 3.3 Repeat step 3.0.
 ELSE
 3.4 Go to Step 4.0.
4.0 END.

8

The while Loop

cin >> countDown;

 while(countDown > 0)

 {

 cout << "* " ;

 countDown--;

 }

9

The while Loop

 When doing something repetitive, we
want to know when we are done.

 Example:

 I want to get at least $20,000

 So we set  balance >= TARGET

 But the while loop thinks the opposite:

 How long I am allowed to keep going?

 So the correct condition :

•while (balance < TARGET)

10

The while Loop

11

The algorithm for an investment problem:

1. Start with a year value of 0 and a balance of $10,000.

2. Repeat the following steps

while the balance is less than $20,000:

• Add 1 to the year value.

• Multiply the balance value by 1.05 (a 5 percent increase).

3. Report the final year value as the answer.

“Repeat .. while” in the problem indicates a loop is needed.
To reach the goal of being able to report the final year
value, adding and multiplying must be repeated some
unknown number of times.

Using a Loop to Solve the

Investment Problem.

12

Using a Loop to Solve the

Investment Problem.

The statements to be controlled are:
Incrementing the year variable
Updating the balance variable using a const for the
RATE

 year++;

 balance = balance * (1 + RATE / 100);

13

Using a Loop to Solve the

Investment Problem.

 The condition, which indicates when to stop
executing the statements, is this test:

(balance < TARGET)

14

Using a Loop to Solve the

Investment Problem.

Here is the complete while statement:

while (balance < TARGET)

{

 year++;

 balance = balance * (1 + RATE / 100);

}

15

Flowchart of the Investment

Calculation’s while Loop

16

#include <iostream>

using namespace std;

int main()

{

 const double RATE = 5;

 const double INITIAL_BALANCE = 10000;

 const double TARGET = 2 * INITIAL_BALANCE;

 double balance = INITIAL_BALANCE;

 int year = 0;

 while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + RATE / 100);

 }

 cout << "The investment doubled after "

 << year << " years." << endl;

 return 0;

}

The Complete Investment Program

17

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

Program Run

1. Check the loop

condition

 balance = 10000

 year = 0

18

Program Run

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

The condition

is true
1. Check the loop

condition

 balance = 10000

 year = 0

19

Program Run

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

1. Check the loop

condition

 balance = 10000

 year = 0

The condition

is true

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

2. Execute the

statements in

the loop

 balance = 10500

 year = 1

20

Program Run

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

3. Check the loop

condition again

 balance = 10500

 year = 1

The condition

is still true

21

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

The condition

is still true

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

4. Execute the

statements in

the loop

 balance = 11000

 year = 2

Program Run

3. Check the loop

condition again

 balance = 10500

 year = 1

22

Program Run

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

The condition

is still true

while (balance < TARGET)

 {

 year++;

 balance = balance * (1 + rate / 100);

 }

4. Execute the

statements in

the loop

 balance = 11500

 year = 3

3. Check the loop

condition again

 balance = 11000

 year = 2

23

…This process continues

 for 15 iterations…

Program Run

24

The final output indicates

that the investment

doubled in 15 years.

Program Run

25

Program Run

26

Program Run

27

Skip the examples?

NO YES

More while Examples

28

For each of the following, do a hand-trace

More while Examples

29

Example of Normal Execution

while loop to hand-trace What is the output?

i = 5;

while (i > 0)

{

 cout << i << " ";

 i--;

}

30

When i Is 0, the Loop Condition Is false,

and the Loop Ends

while loop The output

i = 5;

while (i > 0)

{

 cout << i << " ";

 i--;

}

1 2 3 4 5

correct?

OR

5 4 3 2 1

31

while loop to hand-trace What is the output?

i = 5;

while (i > 0)

{

 cout << i << " ";

 i++;

}

Example of a Problem – An

Infinite Loop

32

while loop The output never ends

i = 5;

while (i > 0)

{

 cout << i << " ";

 i++;

}

5

i is set to 5

The i++; statement makes i get bigger and bigger

the condition will never become false –

an infinite loop

Example of a Problem – An

Infinite Loop

5 6

5 6 7

5 6 7 8

5 6 7 8 9

5 6 7 8 9 10

5 6 7 8 9 10 11

5 6 7 8 9 10 11...

33

Another Normal Execution – No

Errors

while loop to hand-trace What is the output?

i = 5;

while (i > 5)

{

 cout << i << " ";

 i--;

}

34

i = 5;

while (i > 5)

{

 cout << i << " ";

 i--;

}

The expression i > 5 is initially false,

so the statements are never executed.

Another Normal Execution – No

Errors

while loop There is (correctly) no output

35

i = 5;

while (i > 5)

{

 cout << i << " ";

 i--;

}

This is not a error.

Sometimes we do not want to execute the statements

unless the test is true.

Another Normal Execution – No

Errors

while loop There is (correctly) no output

36

while loop to hand-trace What is the output?

i = 5;

while (i < 0)

{

 cout << i << " ";

 i--;

}

Normal Execution with Another

“Programmer’s Error”

37

while loop Again, there is no output

i = 5;

while (i < 0)

{

 cout << i << " ";

 i--;

}

The programmer probably thought:
“Stop when i is less than 0”.

Normal Execution with Another “Programmer’s Error”

However, the loop condition controls

when the loop is executed - not when it ends.

38

while loop to hand-trace What is the output?

i = 5;

while (i > 0);
{

 cout << i << " ";

 i--;

}

A Very Difficult Error to Find
(especially after looking for it for hours and hours!)

39

Another infinite loop – caused by a

single character:
;

while loop There is no output!

i = 5;

while (i > 0);
{

 cout << i << " ";

 i--;

}

A Very Difficult Error to Find (especially after looking for it for hours and hours!)

That semicolon causes the while loop to have

an “empty body” which is executed forever.

The i in (i > 0) is never changed.

40

 Forgetting to update the variable used in the condition is

common.

 In the investment program, it might look like this.

year = 1;

while (year <= 20)

{

 balance = balance * (1 + RATE / 100);

}

• The variable year is not updated in the body

Common Error – Infinite Loops

41

 Typing ++ when you meant to type --
is a real problem, especially when it’s 3:30 am!

year = 20;

while (year > 0)

{

 balance = balance * (1 + RATE / 100);

 year++;

}

Another way to cause an infinite loop:

Typing on “autopilot”

Common Error – Infinite Loops

42

A Not Really Infinite Infinite

Loop

 Due to what is called “wrap around”, the previous loop

will end.

 At some point the value stored in the int variable gets

to the largest representable positive integer. When it is

incremented, the value stored “wraps around” to be a

negative number.

 That definitely stops the loop!

43

 When doing something repetitive,

most of us want to know when we are done.

For example, you may think,

“I want to get at least $20,000,”

and set the loop condition to

 while (balance >= TARGET)

Common Error – Are We There

Yet?

wrong test

44

while ()

 But the while loop thinks the opposite:

How long am I allowed to keep going?

 What is the correct loop condition?

Common Error – Are We There

Yet?

45

while (balance < TARGET)

In other words:

“Keep at it while the balance

is less than the target”.

 But the while loop thinks the opposite:

How long am I allowed to keep going?

 What is the correct loop condition?

Common Error – Are We There

Yet?

46

Common Error – Off-by-One

Errors

In the code to find when we have doubled our investment:

 Do we start the variable for the years

 at 0 or 1 years?

 Do we test for < TARGET

 or for <= TARGET?

47

 Maybe if you start trying some numbers and
add +1 or -1 until you get the right answer
you can figure these things out.

 It will most likely take a very long time to try
ALL the possibilities.

 No, just try a couple of “test cases”
(while thinking).

Common Error – Off-by-One

Errors

48

 Consider starting with $100 and a RATE of 50%.

 We want $200 (or more).

 At the end of the first year,
 the balance is $150 – not done yet

 At the end of the second year,
 the balance is $225 – definitely over TARGET
 and we are done.

 We made two increments.

What must the original value be so that we end up with 2?

 Zero, of course.

Use Thinking to Decide!

49

 Another way to think about the initial value is:

Before we even enter the loop, what is the correct value?

Most often it’s zero.

Use Thinking to Decide!

50

 Figure out what you want:

 “we want to keep going until

 we have doubled the balance”

 So you might have used:

 (balance < TARGET)

< vs. <= (More Thinking)

51

 But consider, did you really mean:

 “…to have at least doubled…”

Exactly twice as much would happen with
a RATE of 100% - the loop should top then

 So the test must be (balance <= TARGET)

< vs. <= (More Thinking)

52

The for Loop

53

for (initialization; check; update)

{

 statements

}

The check is some kind of test (the same as the condition
in the while loop)

It is usually used to cause the statements to happen a

certain number of times.

The for Loop

54

for (initialization; check; update)

{

 statements

}

The statements are repeatedly executed

until the check is false.

The for Loop

55

for (initialization; check; update)

{

 statements

}

The initialization is code that happens once, before the

check is made, in order to set up for counting how many

times the statements will happen.

The for Loop

56

for (initialization; check; update)

{

 statements

}

The update is code that causes the check to eventually

become false.

Usually it’s incrementing or decrementing the loop variable.

The for Loop

57

The for Loop Is Better than

while for Doing Certain Things

Consider this code which write the values

1 through 10 on the screen:

int count = 1; // Initialize the counter

while (count <= 10) // Check the counter

{

 cout << count << endl;

 count++; // Update the counter

}

initialization check statements update

58

initialization check statements update

for (int count = 1; count <= 10; count++)

{

 cout << count << endl;

}

Doing something a certain number of times or

causing a variable to take on a sequence of values is

so common, C++ has a statement just for that:

The for Loop Is Better than

while for Doing Certain Things

59

Execution of a for Statement

int count;

for (counter = 1; count <= 10; counter++)

{

 cout << counter << endl;

}

Consider this for statement:

60

61

Scope of the Loop Variable –

Part of the for or Not?

 The “loop variable” when defined as part of the
for statement cannot be used before or after

the for statement – it only exists as part of the

for statement and should not need to be used

anywhere else in a program.

62

Solving a Problem with a for

Statement

Earlier we determined the number of years it would

take to (at least) double our balance.

Now let’s see the interest in action:

We want to print the balance of our savings

account over a five-year period.

The “…over a five-year period” indicates that a
for loop should be used. Because we know how

many times the statements must be executed we
choose a for loop.

63

Solving a Problem with a for

Statement

The output should look something like this:

64

Flowchart of

the investment

calculation’s
while loop

Easily written using a
for loop

The for Loop

65

Solving a Problem with a for

Statement

 Two statements should happen five times.

So use a for statement.

They are:

 update balance

 print year and balance

for (int year = 1; year <= nyears; year++)

{

}

// update balance

// print year and balance

66

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 const double RATE = 5;

 const double INITIAL_BALANCE = 10000;

 double balance = INITIAL_BALANCE;

 int nyears;

 cout << "Enter number of years: ";

 cin >> nyears;

 cout << fixed << setprecision(2);

 for (int year = 1; year <= nyears; year++)

 {

 balance = balance * (1 + RATE / 100);

 cout << setw(4) << year << setw(10) << balance << endl;

 }

 return 0;

}

The Modified Investment Program Using a for Loop

67

A run of the program:

Enter number of years: 10

1 10500.00

2 11025.00

3 11576.25

4 12155.06

5 12762.82

6 13400.96

7 14071.00

8 14774.55

9 15513.28

10 16288.95

The Modified Investment
Program Using a for Loop

68

More for Examples

For each of the following, do a hand-trace.

69

for loop to hand-trace What is the output?

for (int i = 0;i <= 5;i++)

 cout << i << " ";

Example of Normal Execution

70

for loop The output

0 1 2 3 4 5

for (int i = 0;i <= 5;i++)

 cout << i << " ";

Note that the output statement is

executed six times, not five

Example of Normal Execution

71

for loop to hand-trace What is the output?

for (int i = 5;i >= 0;i--)

 cout << i << " ";

Example of Normal Execution –

Going in the Other Direction

72

for loop
The output

5 4 3 2 1 0

for (int i = 5;i >= 0;i--)

 cout << i << " ";

Again six executions of the

output statement occur.

Example of Normal Execution

– Going in the Other Direction

73

for (int i = 0; i < 9; i += 2)

 cout << i << " ";

Example of Normal Execution

– Taking Bigger Steps

for loop to hand-trace What is the output?

0 2 4 6 8

74

for loop The output

0 2 4 6 8

for (int i = 0;

 i < 9;

 i += 2)

 cout << i << " ";

The “step” value can be added to or

subtracted from the loop variable.

Here the value 2 is added.

There are only 5 iterations, though.

Example of Normal Execution –

Taking Bigger Steps

75

for loop to hand-trace What is the output?

for (int i = 0;

 i != 9;

 i += 2)

 cout << i << " ";

The danger of using ==

and/or !=

Infinite Loops Can Occur in for

Statements

76

for loop The output never ends

0 2 4 6 8 10 12…

for (int i = 0;

 i != 9;

 i += 2)

 cout << i << " ";

= = and != are best avoided

in the check of a for statement

Infinite Loops Can Occur in

for Statements

77

for loop to hand-trace What is the output?

for (int i = 1;

 i <= 20;

 i *= 2)

 cout << i << " ";

The update can be any expression

Example of Normal Execution –

Taking Even Bigger Steps

78

for loop The output

1 2 4 8 16

for (int i = 1;

 i <= 20;

 i *= 2)

 cout << i << " ";

The “step” can be multiplicative or any valid expression

Example of Normal Execution –

Taking Even Bigger Steps

79

The while loop’s condition test is the first thing

that occurs in its execution.

The do loop (or do-while loop) has its condition tested

only after at least one execution of the statements.

The do Loop

80

This means that the do loop should be used only

when the statements must be executed before

there is any knowledge of the condition.

The do Loop

This also means that the do loop is the least used loop.

81

What problems require something to

have happened before the testing in

a loop?

Getting valid user input is often cited.

Here is the flowchart for the problem

in which the user is supposed to

enter a value less than 100 and

processing must not continue until

they do.

The do Loop

82

Here is the code:

In this form, the user sees the same prompt each time until the enter

valid input.

The do Loop

int value;

do

{

 cout << "Enter a value < 100";

 cin >> value;

}

while (value >= 100);

83

In order to have a different, “error” prompt that the user sees only on
invalid input, the initial prompt and input would be before a while loop:

Notice what happens when the user gives valid input on the first attempt:

nothing – good.

The do Loop

int value;

cout << "Enter a value < 100";

cin >> value;

while (value >= 100);

{

 cout << "Sorry, that is larger than 100\n"

 << "Try again: ";

 cin >> value;

}

84

Nested Loops

For each hour, 60 minutes are processed – a nested loop.

85

Nested Loops

Nested loops are used mostly for data in tables as

rows and columns.

The processing across the columns is a loop, as you

have seen before, “nested” inside a loop for going

down the rows.

Each row is processed similarly so design begins at

that level. After writing a loop to process a

generalized row, that loop, called the “inner loop,” is

placed inside an “outer loop.”

86

Nested Loops

Write a program to produce a table of powers.

 The output should be something like this:

87

Nested Loops

 The first step is to solve the “nested” loop.

 There are four columns and in each column we display the power.

Using x to be the number of the row we are processing, we have (in

pseudo-code):

You would test that this works in your code before continuing. If you

can’t correctly print one row, why try printing lots of them?

88

Nested Loops

 Now, putting the
inner loop
into the whole
process we have:

(don’t forget to indent,
nestedly)

89

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

 const int NMAX = 4;

 const double XMAX = 10;

 // Print table header

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << n;

 }

 cout << endl;

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << "x "; // print x

 }

 cout << endl << endl;

The Complete Program for Table

of Powers

90

 // Print table body

 for (double x = 1; x <= XMAX; x++)

 {

 // Print table row

 for (int n = 1; n <= NMAX; n++)

 {

 cout << setw(10) << pow(x, n);

 }

 cout << endl;

 }

 return 0;

}

The Complete Program for

Table of Powers

The program run would be:

91

More Nested Loop Examples

The loop variables can have a value relationship.

In this example the inner loop depends on the value

of the outer loop.

 for (i = 1; i <= 4; i++)
 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

The output will be:

*

**

92

for (i = 1; i <= 4; i++)

 for (j = 1; j <= i; j++)

 cout << "*";

cout << endl;

 j stops at: i i i i

 1 2 3 4

 line num. i 1 *

 i 2 * *

 i 3 * * *

 i 4 * * * *

More Nested Loop Examples

i represents the

row number or

the line number

j is the number of “columns”

(or the line’s length), which
depends on the line number, i

93

In this example, the loop variables are still related, but the processing is

a bit more complicated.

More Nested Loop Examples

The output will be:

* * *

 * *

* * *

for (i = 1; i <= 3; i++)

{

 for (j = 1; j <= 5; j++)

 {

 if (i + j % 2 == 0)

 { cout << "*"; }

 else { cout << " "; }

 }

 cout << endl;

}

94

Processing Input – When

and/or How to Stop?

or be stopped!

95

Processing Input – When

and/or How to Stop?

 We need to know, when getting input

from a user, when they are done.

 One method is to hire

a sentinel (as shown)

or more correctly choose a value whose meaning is STOP!

 As long as there is a known range of valid data points, we

can use a value not in it.

96

Processing Input – When

and/or How to Stop?
We will write code to calculate the average of some
salary values input by the user.

How many will there be?

That is the problem. We can’t know.

But we can use a sentinel value, as long as we tell
the user to use it, to tell us when they are done.

Since salaries are never negative, we can safely
choose -1 as our sentinel value.

97

Processing Input – When

and/or How to Stop?
In order to have a value to test, we will need to get

the first input before the loop. The loop statements

will process each non-sentinel value, and then get

the next input.

Suppose the user entered the sentinel value as the

first input. Because averages involve division by the

count of the inputs, we need to protect against
dividing by zero. Using an if-else statement from

Lecture 3 will do.

98

#include <iostream>

using namespace std;

int main()

{

 double sum = 0;

 int count = 0;

 double salary = 0;

 // get all the inputs

 cout << "Enter salaries, -1 to finish: ";

 cin >> salary;

 while (salary != -1)

 {

 // process input

 sum = sum + salary;

 count++;

 // get next input

 cin >> salary;

 }

The Complete Salary Average Program

99

 // process and display the average

 if (count > 0)

 {

 double average = sum / count;

 cout << "Average salary: " << average << endl;

 }

 else

 {

 cout << "No data" << endl;

 }

 return 0;

}

The Complete Salary Average

Program

A program run:

Enter salaries, -1 to finish: 10 10 40 -1

Average salary: 20

100

 Sometimes is it easier and a bit more intuitive to ask the

user to “Hit Q to Quit” instead or requiring the input of a

sentinel value.

 Sometimes picking a sentinel value is simply impossible

– if any valid number is allowed, which number could be

chosen?

Using Failed Input for

Processing

101

 In the previous chapter we used cin.fail()
to test if the most recent input failed.

 Note that if you intend to take more input from the
keyboard after using failed input to end a loop,

you must reset the keyboard with cin.clear().

Using Failed Input for

Processing

102

If we introduce a bool variable to be used to test for a

failed input, we can use cin.fail() to test for the input

of a ‘Q’ when we were expecting a number:

Using Failed Input for

Processing

103

cout << "Enter values, Q to quit: ";

bool more = true;

while (more)

{

 cin >> value;

 if (cin.fail())

 {

 more = false;

 }

 else

 {

 // process value here

 }

}

cin.clear() // reset if more input is to be taken

Using Failed Input for

Processing

104

Using Failed Input for

Processing

Using a bool variable in this way is disliked by

many programmers.

 Why?

cin.fail is set when >> fails.

This allows the use of an input itself to be used as

the test for failure.

Again note that if you intend to take more input from

the keyboard, you must reset the keyboard with
cin.clear.

105

Using the input attempt directly we have:

Using Failed Input for

Processing

cout << "Enter values, Q to quit: ";

while (cin >> value)

{

 // process value here

}

cin.clear();

106

Chapter Summary

 Loops execute a block of code repeatedly while a
condition remains true.

 The for loop is used when the loop body must be
executed at least once.

 Nested loops are commonly used for processing
tabular structures.

 A sentinel value denotes the end of data set, but it
is not part of the data.

 We can use a Boolean variable to control a loop.
Set the variable to true before entering the loop,
then set it to false to leave the loop.

