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Abstract—Understanding heat transfer and phase change behavior is one of 

importance in many field of science and engineering. In order to provide a robust heat 

transfer simulation code, a heat transfer module has been added to a Finite Volume 

Particle (FVP) method-based code. This FVP method is a fully lagrangian method 

developed for incompressible viscous flow, and has been successfully simulate 

several incompressible flow phenomena. The heat transfer module used equilibrium 

phase change model to simulate heat transfer and phase change behavior. To verify 

the heat transfer module’s capability, a benchmark calculations was performed. The 

benchmark problem was a conduction heat transfer involving solidification in an 

infinite slab. Initial temperatures, material properties and boundary conditions were 

set, and the benchmark problem was simulated using the phase change model. The 

calculation results were then compared to the analytical results available beforehand. 

The calculation results show relatively good agreements with the analytical results. It 

is confirmed that the model is validated and therefore can be utilize to simulate phase 

change behavior in incompressible viscous flow with FVP method.  
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I. INTRODUCTION 

Heat transfer and phase change phenomena is one of importance in many field of science and 

engineering. Its application is varied from the solar system, power station generator, climate change, racing 

car machine, nuclear reactor core accident, etc. There are analytical models to construct the behavior of 

heat transfer and phase change model. This study is a numerical solution for heat transfer based on those 

available analytical models. There are several discretization methods to calculate heat transfer problem 

numerically. Those methods are generally divided into two methods: Eulerian method (mesh method) and 

Lagrangian method (meshless or particle method). Each method has their own advantage and disadvantage. 

Eulerian method is cheaper in term of computational resources, but it has limitation in reproducing phase 

change process qualitatively because it cannot capture the phase change interface accurately. Lagrangian 

method is able to overcome these problems, but it is more expensive in computational resources. This 

study used one of the Lagrangian method, called Finite Volume Particle (FVP) method, with a great faith 

that the computational resources disadvantage will disappear as the technology increase day by day. In 

order to verify the FVP-based code’s ability, a heat transfer benchmark was calculated using equilibrium 

phase change model. The calculation result shows that the FVP code can reasonably represent the heat 

transfer benchmark problem with possible improvement in the near future.  

 

II. MATEMATICAL MODELS OF THE FVP METHOD 
 

A. Governing Equation for Heat Transfer and Phase Change 

Control equation for heat transfer and phase change model is energy conservation equation. The 
differential and integral forms of this equation is: 
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where   denotes the fluid density,    is the fluid specific heat capacity, T is the fluid temperature, and Q 

is the fluid heat source. 

 

B. Integral Interpolation of the FVP Method 

In the FVP method [1], the fluid is assumed as finite number of fluid particles, which own the physical 
properties, such as density, temperature and specific heat capacity. Every particle occupies a certain control 
volume, which is considered as a sphere in 3D system, and a circular in 2D system. The surface S and the 
volume V of particle are expressed by (for 2D system) 

             (  )  (3) 

where R is the radius of particle control volume, and ∆l is the initial particle distance. 

All differential operators in differential govern equations (1), such as gradient and Laplacian terms, are 
represented by particle interactions on the surface of the particle control volume. According to Gauss’s 
theorem, the gradient and Laplacian operators are expressed by 
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where ϕ denotes the arbitrary scalar function. As a result, in the FVP method the gradient and Laplacian 
terms of particle i can be approximated as 

〈  〉  〈
 

 
∮   ⃑   
 

〉  
 

 
∑      ⃑        
   

 (6) 

〈   〉  〈
 

 
∮     ⃑   
 

〉  
 

 
∑(

     

|    |
)

   

      
(7) 

where      denotes the reconstruction values of arbitrary scalar function on the surface of the particle i,  ⃑    
is the unit vector of distance between the particle i and j,      is the interaction surface of particle i and j, 

and      is the vector of distance between the particle i and j. Since the finite volume particles are assumed 

to occupy the same volume, the interaction surface      of particle i with j can be calculated by Eq. (8) to 

ensure that the kernel function form a partition of unity [2] 
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where     denotes the kernel function between particle i and j. 

The gradients of arbitrary function (such as temperature) are computed on the surface of each particle, 
and hence the function values for      are obtained by using linear reconstruction as 
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The kernel function between particle i and j in the FVP method is defined by 
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where    denotes the radius of interaction domain which is called as “the cut-off radius”. Figure 1 
schematically shows the two-dimensional interactions between finite volume particles. 
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Figure 1. Neighboring particles around particle i within the cut-off radius 

 

III. EQUILIBRIUM PHASE CHANGE MODEL 

The governing equation that determines the phase change process, Eq. (1), can be expressed as [3] 
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here,    , because of no external heat source. The Laplacian term in the above equation is 
approximated by Eq. (7). Eq. (12) becomes: 

  
     

 

  
 
   

   

 

 
∑

  
    

 

| ⃗  |
     

(13) 

Thermal conductivity coefficient between particle i and particle j,    , is defined as 

    

{
 
 

 
                    if particle    is a mixture

                  if particle    is a mixture
     

     
                            otherwise

 

(14) 

Phase change process in this study is treated as equilibrium heat transfer at phases interface. The phase 
change is determined when the solid particle’s temperatures exceed the melting temperature or when the 
liquid particle’s temperatures drop below freezing temperature. The interface temperatures of solid-liquid 
particles where phase change occurs are the melting/freezing temperature of particle 

                                        (15) 

The phase change rate to the solid or liquid phase is expressed as the linear change during the 
freezing/melting process, while the unchanging phase can be recognized as rigid solid or fully liquid.   
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where       and    is the internal energy of particle i, solid and liquid, respectively.  
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IV. BENCHMARK PROBLEM 

 

This study simulated a benchmark solidification problem of an infinite slab of liquid. This problem has 
been solved analytically by several authors [4], and simulated by several Euler codes, such as finite 
element method [5]. The slab was originally one dimension, but in the present study, it is solved as a two 
dimensional problem with temperature dependent heat capacity and thermal conductivity. The heat 
capacity of solid and liquid phases is different discontinuously, while the thermal conductivity varies 
linearly, depend on the solid or liquid fraction of the particle, as defined in Eq. (16). Figure 2 describe the 
temperature-dependency of heat capacity and thermal conductivity [6].  

 

Figure 2. Estimation of thermophysical properties in phase change problems 

 

The slab dimension and the material properties used in the present study is given in Figure 3 and Table 
1, respectively. We added one layer in each side of the calculation domain as the boundary wall. These 
walls were set as non-conductive boundaries. The initial temperature of the most left region (at x = 0) was 
set to 253.15 K while the rest liquid temperature was 283.15 K.  

 

Figure 3. Slab Dimension (in meter) 

 

TABEL 1. MATERIAL PROPERTIES 
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V. SIMULATION RESULTS 

 

A. Visualization Results of the Heat Transfer Process 

Figure 4 shows the heat transfer process resulted from simulation. At the beginning, at x = 0, the 
temperature was 253.15 K, while the rest was 283.15 K as mentioned above. The temperature difference 
is described as temperature gradient from cold (colored blue) to hot (colored red). As the time flows, the 
heat transfer begin from the left side to the right, depicted in the figure as the changing colors. When the 
liquid’s temperature exceeds the freezing temperature, the liquid will become freeze and turned into solid. 
Due to the relatively small difference of initial temperature (30 K) and low conductivity of the liquid, the 
freezing process occurred slowly.  

t = 0 sec 

 

 

t = 50000 sec 

 

t = 100000 sec 

 

t = 150000 sec 

4.226 × 10
6
 J/kgK 

ρ 1 m
3
/kg 

Freezing temperature 273 K 
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Figure 4. Heat Transfer Process in Simulation 

 

B. Temperature Distribution 

The simulation results were also compared quantitatively with the analytical solution provided 
by Luikov. The temperature distribution along the slab were compared at 18000 sec, 72000 sec and 
144000 sec as can be seen in Figure 5, 6 and 7 below. 

 

 

Figure 5. Temperature distribution at t = 18000 sec 
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Figure 6. Temperature distribution at t = 72000 sec 

 

 

Figure 7. Temperature distribution at t = 144000 sec 

 

 The graph shows that at the initial slab position, the simulation results always over-
estimate the analytical results. The maximum relative error was 2.01%. However, the position where the 
slab temperature is still unchanged for every time step are relatively same for both simulation and 
analytical results. The difference between simulation and analytical results are estimated as the result of 
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the discretization size and time step. In this simulation, we used         m as the initial particle 
distance and         sec. We used these numbers in order to minimize the computational load, due to 
our lack of computational resources. It is strongly believed that the simulation results will have better 
agreement if we use smaller initial particle distance and smaller time step (standard FVP calculation uses 
        sec). In the near future, we are planning to simulate this benchmark problem with another 
phase change model, i.e. non-equilibrium phase change model to investigate the model’s effect on the 
simulation results.    

VI. CONCLUDING REMARKS 

In this study, a benchmark problem involved conductive heat transfer and phase change has been 
conducted. The simulation used FVP method and equilibrium phase change model to discretized 
calculation domain and to simulate the heat and phase change behavior. The benchmark problem used in 
this study was a solidification in an infinite slab, which was described as two dimensional problems. The 
simulation and analytical results were compared and showed relatively good agreement with each other. 
The maximum relative error was 2.01%, and further investigation will be conducted to improve the present 
simulation results.  
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