Valid and Invalid Arguments

An argument is a sequence of statements such that

- all statements but the last are called hypotheses
- the final statement is called the conclusion.
- the symbol \therefore read "therefore" is usually placed just before the conclusion.

Example:

$$
\begin{aligned}
& \mathrm{p} \wedge \sim \mathrm{q} \rightarrow \mathrm{r} \\
& \mathrm{p} \vee \mathrm{q} \\
& \mathrm{q} \rightarrow \mathrm{p}
\end{aligned}
$$

> An argument is said to be if
> - whenever all hypotheses are true, the conclusion must be true.
$\therefore r$

Example of a valid argument (form)

$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
$\sim \mathrm{q}$
$\therefore \mathrm{p} \wedge \mathrm{r}$

p	q	r	$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$	$\sim \mathrm{q}$
T T T	T	$\mathrm{p} \wedge \mathrm{r}$		
T T F	T	F	T	
T F T	T	F		
T F F	F	T	F	
F T T	F	F	F	
F T F	F	F	F	
F F T	F	T	F	
F F F	F	T	F	

An invalid argument

$$
\begin{aligned}
& \mathrm{p} \rightarrow \mathrm{q} \vee \sim \mathrm{r} \\
& \mathrm{q} \rightarrow \mathrm{p} \vee \mathrm{r} \\
& \therefore \mathrm{p} \rightarrow \mathrm{r}
\end{aligned}
$$

	p q r	$\mathrm{p} \rightarrow \mathrm{q} \vee \sim \mathrm{r}$	$\mathrm{q} \rightarrow \mathrm{p} \vee \mathrm{r}$	$\mathrm{p} \rightarrow \mathrm{r}$
	T T T	T	T	T
	T T F	T	F	
	T F T	F	T	
Invalid row	T F F			F
	F T T	T	F	
	F T F	T	F	
	F F T	T	I	T
	F F F	I	I	

Tautology

- is a statement (form) that is always true regardless of the truth values of the individual statement variables.

Examples:

$\cdot p \vee \sim p \quad$ (eg. the number n is either >0 or ≤ 0)

- $\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{p}$
- $(\mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{r}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$

> We need to study tautologies because any valid argument is equivalent to a tautology. In particular, every theorem we have proved is a tautology.

Example:

$$
\begin{aligned}
& \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r}) \\
& \sim \mathrm{q} \\
\therefore & \mathrm{p} \wedge \mathrm{r}
\end{aligned}
$$

$$
[\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})] \wedge[\sim \mathrm{q}] \rightarrow[\mathrm{p} \wedge \mathrm{r}]
$$

is a valid argument,
In other words, an argument
H_{1}
H_{2}
H_{n}
\therefore Conclusion
is valid if and only if $\mathrm{H}_{1} \wedge \mathrm{H}_{2} \wedge \ldots \wedge \mathrm{H}_{n} \rightarrow$ conclusion
is a tautology.

Two most important valid argument forms

Modus Ponens : means method of affirming

$$
\begin{aligned}
& \mathrm{p} \rightarrow \mathrm{q} \\
& \mathrm{p} \\
& \therefore \mathrm{q}
\end{aligned}
$$

Example: If $n \geq 5$, then n ! is divisible by 10 .

$$
n=7
$$

$\therefore 7!$ is divisible by 10 .
Modus Tollens : means method of denying
$\mathrm{p} \rightarrow \mathrm{q}$

$\therefore \sim p$
Example: If n is odd, then n^{2} is odd. n^{2} is even.
$\therefore n$ is even.

More valid forms

Conjunctive simplification: $\quad \mathrm{p} \wedge q$ ऊ p

Example: The function f is 1 -to- 1 and continuous. ও The function f is 1 -to- 1 .

Disjunctive addition:

```
p
ॐ p
```

Example: The function f is increasing. ぶ The function f is increasing or differentiable.

More valid forms

Conjunctive addition: p
 $$
\begin{gathered} q \\ \text { ॐ } \\ \text { p } \end{gathered}
$$

Example: n is an integer, n is positive. ऊँ n is a positive integer.

Disjunctive syllogism: $\underset{, p q q}{p} \downarrow$
Example: The graph of this equation may be a circle or an ellipse.
The graph of this equation cannot be a circle.
ऊँ The graph must be an (true) ellipse.

Hypothetical syllogism:

 q F ऊ p r

Example:
n is either odd or even.
If n is odd, then $n(n-1)$ is even.
If n is even, then $n(n-1)$ is even.
Therefore $n(n-1)$ is always even.

Rule of contradiction:
 "p c
 ॐ p

A valid argument with a false conclusion.

If p is prime, then $2^{p}-1$ is also prime (False).
11 is prime (True).
Therefore $2^{11}-1$ is prime (False).

Actually, $2^{11}-1=2047=23 \times 89$ is not prime.

Note: Any prime of the form $2^{p}-1$ is called a Mersenne prime, the largest one up to date is $2^{6972593}$ - 1 (discovered on 6-1-99)

