1.1 THE REAL NUMBER SYSTEM

1.1 Real Number System

Calculus is based on real number system and its properties.
The simplest number system: natural numbers, which are 1, 2, 3,..

- The set of natural numbers is usually denoted as \mathbb{N}. So $\mathbb{N}=\{1,2,3,4, \ldots\}$

If we add all of their negatives and 0 , then we get integer numbers, which includes ..., $-3,-2,-1,0,1,2,3, \ldots$

- The set of all integers numbers is with \mathbb{Z}. Thus, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

How about if we want to measure the length or weight of an object? We need rational numbers, such as 2.195, 2.4, dan 8.7.

- Rational number: a number that can be written as $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

Then, integers are also rational numbers, i.e. 3 is a rational number because it can be written as $\frac{2}{6}$.

- The set of all rational numbers are denoted by \mathbb{Q} :

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\right\}
$$

What about the length of hypotenuse of this triangle?

1

Using irrational numbers this thing would be easy. Other examples of irrational numbers are $\sqrt{3}, \sqrt{7}$, e and π.

- The set of all rational and irrational numbers with their negatives and zero is called real numbers, \& it is denoted as \mathbb{R}.
- Relation between those four set $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ an be defined as

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

- Rational/irrational number: can be written as decimal. What's the difference?
- Rational number:

$$
\begin{gathered}
\frac{1}{2}=0,5 \\
\frac{13}{11}=1,181818 \ldots \\
\frac{3}{8}=0,375
\end{gathered}
$$

- Irrational number:

$$
\begin{aligned}
& \sqrt{2}=1,4142135623 \ldots \\
& \pi=3,1415926535 \ldots
\end{aligned}
$$

Difference: repeated decimal is a rational number. ie. $x=$ 0.136136136 ...

1.2 Number Operations

Given,$y \in \mathbb{R}$, then we already knew such operations: addition (x $+y) \&$ multiplication (x .y or xy).

- The properties of those two operation in \mathbb{R} are:

1) Commutative: $x+y=y+x \& x y=y x$.
2) Assosiative: $x+(y+z)=(x+y)+z \& x(y z)=$ ($x y$)z.
3) Distributive: $x(y+z)=x y+x z$.
4) Identity elements:

- for addtition: 0 because $x+0=x$.
- for multiplication: 1 because $x .1=x$.

5) Invers:

- Every $x \in \mathbb{R}$ has an additive invers (disebut juga negatif) $-x$ such that $x+-x=0$.
- Every $x \in \mathbb{R}, x \neq 0$ has a multiplicative invers (disebut juga balikan) x^{-1} such that $x \cdot x^{-1}=1$.

1.3 Order

Non zero real numbers can be divided into 2 different sets: positive real and negative real numbers. Based on this fact, we introduce ordering relation < (read "less than") defined as:

$$
x<y \text { jika dan hanya jika } y-x \text { positif. }
$$

- $x<y$ has the same meaning with $y>x$.
- Properties of Order:

1) Trichotomous: for $\forall x, y \in \mathbb{R}$, exactly one of $x<y$ atau $x=y$ atau $x>y$ holds.
2) Transitive: If $x<y$ and $y<z$ then $x<z$.
3) Addition: $x<y \Leftrightarrow x+z<y+z$
4) Multiplication:

$$
\begin{aligned}
& \text { If z positif then } x<y \Leftrightarrow x z<y z \\
& \text { Ifz negatif then } x<y \Leftrightarrow x z>y z
\end{aligned}
$$

1.3 Inequalities

- Inequality is an open sentence that uses $<,>, \leq$ or \geq relation.
- The solution of an inequality is all real numbers that satisfies the inequality, which usually in the form of an interval atau union of intervals.

Some common intervals:

Penulisan Interval	Penulisan Himpunan
(a, b)	$\{x \in \mathbb{R} \mid a<x<b\}$
$[a, b]$	$\{x \in \mathbb{R} \mid a \leq x \leq b\}$
$[a, b)$	$\{x \in \mathbb{R} \mid a \leq x<b\}$
$(a, b]$	$\{x \in \mathbb{R} \mid a<x \leq b\}$
$(-\infty, b)$	$\{x \in \mathbb{R} \mid x<b\}$
$(-\infty, b]$	$\{x \in \mathbb{R} \mid x \leq b\}$
(a, ∞)	$\{x \in \mathbb{R} \mid x>a\}$
$[a, \infty)$	$\{x \in \mathbb{R} \mid x \geq a\}$
$(-\infty, \infty)$	\mathbb{R}

How to solve the inequalities?

- We can add the same number to both sides of inequality.
- We can multiply a positive number to both sides of inequality.
- We can multiply a negative number to both sides of inequality, and the order relation is inversed.

Example of Inequalities

1) $2 x-7<4 x-2$
2) $-5 \leq 2 x+6<4$
3) $x^{2}-x-6<0$
4) $3 x^{2}-x-2>0$
5) $\frac{2 x-5}{x-2} \leq 1$

Contoh 1

Find the solution of $2 x-7<4 x-2$.
Solution:

$$
\begin{gathered}
2 x-7<4 x-2 \\
\Leftrightarrow 2 x<4 x+5 \\
\Leftrightarrow-2 x<5 \\
\Leftrightarrow x>-\frac{5}{2}
\end{gathered}
$$

Solution: interval $\left(-\frac{5}{2}, \infty\right)=\left\{x \left\lvert\, x>-\frac{5}{2}\right.\right\}$

