Dear Prof. Atun,

Pharmacognosy Journal has received your manuscript entitled "SYNTHESIS OF NANO PARTICLES PRODUCED BY ETHANOL EXTRACT OF BOESENBERGIA ROTUNDA RHIZOME LOADED WITH CHITOSAN AND ALGINIC ACID AND ITS BIOLOGICAL ACTIVITY TEST" for consideration for publication. The reference number for this manuscript is "PJ_103_16". Kindly quote this in correspondence related to this manuscript.

Currently, it is under editorial review followed by peer review.

You are also required to send signed copyright form within 24 hours. Without copyright form, your manuscript will not be processed for publication.
http://phcog.net/sites/default/files/authorship_forms.zip ; If you have already sent the copyright form, you can ignore it.

Pre-Press Charges
Upon acceptance and receipt of galley proof, Authors are required to pay a nominal pre-press charges of 4000 INR + 14.5 % Service Tax [Indian Authors] 200 USD [Foreign authors] is applicable for articles of 1-6 pages, 2 tables, 2 figures. Lengthy articles will incur more charges and APC to be paid to the parent organization "Phcog.Net" Bangalore, INDIA .

Visit http://www.phcog.net/authors

Article processing charges (APCs) are associated with only accepted articles to cover the costs of making the final version of the manuscript freely available via open access.

Final article layout : Above charges are applicable for a minimum of 1-6 pages. For
more than 6 pages, add charges, of Rs. 350/extra page or 10 USD/extra page.

To cover the cost of the following

Journal hosting systems [jHOST]
Manuscript submission systems [Journaloweb.com]
In-house copy editing and linguistic support
Pagination & typesetting
Inclusion in Crossref, giving a permanent DOI and enabling easy citation in other journals.
Archiving, where appropriate, in an internationally recognized, open access repositories.

Manuscript payments are associated only for accepted papers.

We thank you for submitting your valuable work to the Pharmacognosy Journal.

Yours sincerely,
Editor
Pharmacognosy Journal

Message sent on Sunday, November 06, 2016
Please add journals@phcog.net as a contact in your E-mail client to ensure that this mail is not considered as a junk mail.

---- END OF MESSAGE ----

Journal Office
Editor, Pharmacogn J.

Phcog.Net
17, II Floor, Buddha Vihar Road,
Cox Town, Bangalore 560 005, INDIA
P : +91-80-65650760
E : journals@phcog.net
If you cannot see this page properly, please click here.

Dear Prof. Atun,

Pharmacognosy Journal has received your manuscript entitled "POTENTIAL BIOACTIVE COMPOUNDS ISOLATED FROM BOESENBergIA ROTUNDA AS ANTIOXIDANT AND ANTIMICROBIAL AGENTS" for consideration for publication. The reference number for this manuscript is "PJ_225_17". Kindly quote this in correspondence related to this manuscript.

Currently, it is under editorial review followed by peer review.

You are also required to send signed copyright form within 24 hours. Without copyright form, your manuscript will not be processed for publication. http://phcog.net/sites/default/files/authorship_forms.zip ; If you have already sent the copyright form, you can ignore it.

Pre-Press Charges
Upon acceptance and receipt of galley proof, Authors are required to pay a nominal pre-press charges of 4000 INR + 14.5 % Service Tax [Indian Authors] 200 USD [Foreign authors] is applicable for articles of 1-6 pages, 2 tables, 2 figures. Lengthy articles will incur more charges and APC to be paid to the parent organization "Phcog.Net" Bangalore, INDIA .

Visit http://www.phcog.net/authors

Article processing charges (APCs) are associated with only accepted articles to cover the costs of making the final version of the manuscript freely available via open access.

Final article layout : Above charges are applicable for a minimum of 1-6 pages. For more than 6 pages, add charges, of Rs. 350/extra page or 10 USD/extra page.
To cover the cost of the following

Journal hosting systems [jHOST]
Manuscript submission systems [Journaloweb.com]
In-house copy editing and linguistic support
Pagination & typesetting
Inclusion in Crossref, giving a permanent DOI and enabling easy citation in other journals.
Archiving, where appropriate, in an internationally recognized, open access repositories.

Manuscript payments are associated only for accepted papers.

We thank you for submitting your valuable work to the Pharmacognosy Journal.

Yours sincerely,
Editor
Pharmacognosy Journal

Message sent on Monday, November 27, 2017
Please add journals@phcog.net as a contact in your E-mail client to ensure that this mail is not considered as a junk mail.

---- END OF MESSAGE ----

Journal Office
Editor, Pharmacogn J.

Phcog.Net
17, II Floor, Buddha Vihar Road,
Cox Town, Bangalore 560 005, INDIA
Whatsapp/Call : +91-96868980760 Skype : phcog.net P : +91-080-48666128
E : journals@phcog.net

Official metrics of Pharmacogn J.
You might be interested to visit our journals

Disclaimer: Editors or editorial board members involved in journals other than Pharmacogn. J. are not necessarily reflect any association or link with Pharmacogn. J. or its owners. Pharmacogn. J. is solely owned by Phcog.Net - A private organization based in Bangalore, dedicated to publish quality research in the field of Natural Products and Pharmacognosy. For more details, visit http://phcog.net; While every effort has been taken to verify the accuracy of the content published in our Journal, Pharmacogn. J. cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of Pharmacogn. J. editorial staff or owners.
Fwd: [PJ]:Article for revision

- **sriatun** <sriatun@uny.ac.id>
Kepada: Sri handayani <handayani@uny.ac.id>
26 Maret 2019 17.27

-------- Forwarded message --------

From: Pharmacognosy Journal <journals@phcog.net>
Date: Mon, 28 Nov 2016, 12:56
Subject: [PJ]:Article for revision
To: <sriatun@uny.ac.id>

If you cannot see this page properly, please click here.

Dear Prof. Atun

With reference to your manuscript entitled 'SYNTHESIS OF NANOPARTICLES PRODUCED BY ETHANOL EXTRACT OF BOESENBERGIA ROTUNDA RHIZOME LOADED WITH CHITOSAN AND ALGINIC ACID AND ITS BIOLOGICAL ACTIVITY TEST', please review the comments of the referees from our site http://www.journalonweb.com/pj. The manuscript would be reconsidered after requisite modifications as per the comments and instructions provided by the journal.

If you wish to continue with the publication process, kindly make the changes according to the comments and upload the revised manuscript from the site along with the point to point clarifications to the comments indicating clearly where in the manuscript the changes have been carried out. Do check the FAQ related to replying to the comments and uploading a file. The contributors' form/images should be sent separately to the Administrative Office of the journal.

The journal allows four weeks for the revision of the manuscript. If we do not hear from you within this period, we will consider it your non-desire to continue the article with us. Please also note that submission of revised article does not guarantee its final acceptance by the journal.

We thank you for submitting your valuable research work to Pharmacognosy Journal.

With warm personal regards,

Editorial Team

Pharmacognosy Journal
Message sent on Monday, November 28, 2016
Please add journals@phcog.net as a contact in your E-mail client to ensure that this mail is not considered as a junk mail.

---- END OF MESSAGE ----

Journal Office
Editor, Pharmacogn J.

Phcog.Net
17, II Floor, Buddha Vihar Road,
Cox Town, Bangalore 560 005, INDIA
P : +91-80-65650760
E : journals@phcog.net

Official metrics of Pharmacogn J.

- H-index - 7 (SCOPUS)
- SJR - 0.25

Pharmacognosy Journal

You might be interested to visit our journals

Disclaimer: Editors or editorial board members involved in journals other than Pharmacogn. J. are not necessarily reflect any association or link with Pharmacogn. J. or its owners. Pharmacogn. J. is solely owned by Phcog.Net - A private organization based in Bangalore, dedicated to publish quality research in the field of Natural Products and Pharmacognosy. For more details, visit http://phcog.net ; While every effort has been taken to verify the accuracy of the content published in our Journal, Pharmacogn. J. cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of Pharmacogn. J. editorial staff or owners.
26 Maret 2019 17.28

Kepada: Sri handayani <handayani@uny.ac.id>

---------- Forwarded message ----------
From: - sriatun <sriatun@uny.ac.id>
Date: Tue, 29 Nov 2016, 11:51
Subject: Re: [PJ]:Article for revision
To: <journals@phcog.net>

Dear Editor

Thank you for review my manuscript paper. I will send my revised paper as soon as possible.

Sri Atun

2016-11-28 12:56 GMT+07:00 Pharmacognosy Journal <journals@phcog.net>:

If you cannot see this page properly, please click here.

Dear Prof. Atun,

NOTE: This e-mail is sent to you as one of the contributing authors. If you are not corresponding author, you do not have to do anything. Please co-ordinate with the author designated by your group as the corresponding author for this manuscript.

Status of the manuscript titled 'SYNTHESIS OF NANOPARTICLES PRODUCED BY ETHANOL EXTRACT OF BOESENBERGIA ROTUNDA RHIZOME LOADED WITH CHITOSAN AND ALGINIC ACID AND ITS BIOLOGICAL ACTIVITY TEST' submitted by Prof. Sri Atun has been changed and a copy of the mail is as;

Dear Prof. Atun

With reference to your manuscript entitled 'SYNTHESIS OF NANOPARTICLES PRODUCED BY ETHANOL EXTRACT OF BOESENBERGIA ROTUNDA RHIZOME LOADED WITH CHITOSAN AND ALGINIC ACID AND ITS BIOLOGICAL ACTIVITY TEST', please review the comments of the referees from our site http://www.journalonweb.com/pj. The manuscript would be reconsidered after requisite modifications as per the comments and instructions provided by the journal.
If you wish to continue with the publication process, kindly make the changes according to the comments and upload the revised manuscript from the site along with the point to point clarifications to the comments indicating clearly where in the manuscript the changes have been carried out. Do check the FAQ related to replying to the comments and uploading a file. The contributors' form/images should be sent separately to the Administrative Office of the journal.

The journal allows four weeks for the revision of the manuscript. If we do not hear from you within this period, we will consider it your non-desire to continue the article with us. Please also note that submission of revised article does not guarantee its final acceptance by the journal.

We thank you for submitting your valuable research work to Pharmacognosy Journal.

With warm personal regards,

Editorial Team

Pharmacognosy Journal

[Kutipan teks disembunyikan]
Dear Author,

Please find the Galley Proof for your manuscript to be published in forthcoming issue of “PJ” scheduled to launch soon. The galley proof is attached to this email. You are required to send the corrections (If any) using the Comment tool available in Acrobat X: http://get.adobe.com/reader/ or as scanned image files in JPG format along with the comments form within 2 Days. Please reply this email at priority. Please note, we may not be able to do second corrections (If any) apart from the first corrections that are received. The manuscript will be further processed for web publication. Hence, thorough checking is expected from your side during this galley proofing.

Kindly submit the corrections within 48 hours.

Thanks & Regards,

Umar

Administrative Office
EManuscript (Publishing)
[A publishing division of Phcog.Net]

#17, II Floor, Buddha Vihar Road
Cox Town, Bangalore 560 046, INDIA

L : +91-80-65650760
E : galleys@emanuscript.in
W : www.phcog.net | www.emanuscript.in
2 lampiran

- comments_form_template.doc
 43K

- PJ_103_16.pdf
 457K
Synthesis of Nanoparticles Produced by Ethanol Extract of Boesenbergia rotunda Rhizome Loaded with Chitosan and Alginic Acid and its Biological Activity test 0074

Sri Atun*, Sri Handayani

ABSTRACT

This work reports the synthesis of nanoparticles produced by ethanol extract of Boesenbergia rotunda rhizome loaded with chitosan and alginic acid, and its biological activity test as antioxidant. The method of synthesis of nanoparticles used an ionic gelation. Activity of the nanoparticle products as antioxidant was tested by the DPPH method. Results of this work showed that nanoparticles chitosan produced by ethanol extract B. rotunda can be synthesized at a concentration (% w/v) of chitosan/Na-TPP and ratio of 8:1, the size range of the nanoparticles were 389 to 877 nm, with a zeta potential of +41.87 mV, and precentage nanoparticle 98.1%. The corresponding nanoparticles of alginic acid/chitosan can be synthesized at a concentration (% w/v) of alginic acid/Ca++ and ratio of 5:1, the size range of the nanoparticles 197 to 877 nm, with a zeta potential of -82.1 mV, and precentage nanoparticle 90.2%. Furthermore, nanoparticles result of the combination of alginic acid–chitosan can be synthesized at a concentration (% w/v) alginic acid/chitosan/Na-TPP and ratio of 6.7:2:1, the size range of the nanoparticle were 226 to 877 nm, and precentage nanoparticle 29.7%. The morphology of each nanoparticle products was spherical and a smooth surface. The chitosan-alginic acid nanoparticles show higher activity than the starting material ethanol extract of B. rotunda.

Keywords: Nanoparticles chitosan, alginic acid, chitosan-alginic acid, B. rotunda, antioxidant.

INTRODUCTION

Dental caries and oral disease are often found in Indonesia. Both of them can affect the health of all sections of society, including vulnerable to gum disease. Dental caries is a multifactorial disease, caused by factors of the surface of the tooth itself, the substrate, microorganisms and time. The disease is also strongly associated as a cause of coronary heart disease, kidney failure, stomach cancer, colon cancer, and oral cancer. The negative impact is easily seen as a plaque attached to the tooth surface, which if not addressed could cause damage to the email that cause caries or cavities.1,2 Some antibiotics have been found to prevent and reduce the formation of plaque, but they can cause side effects when used continuously, namely the emergence of a strain of bacteria resistant to antibiotics and cannot be absorbed by tissues.3 The use of antibiotics often results in resistant, while the use of antiseptics, such as chlorhexidine can prevent even can remove plaque that has been formed, but the side effects is the discoloration of the teeth and tongue and taste disorders after use.4 Therefore, it is necessary to find new antibacterial natural ingredients that have no side effects.

Nanotechnology is the study of particles in the size range of 1-1000 nm. The nano scale will bring up the physical, chemical, and biological characteristics. Nanotechnology has been applied in various fields such as electronics, energy, space, medicine, food, chemical sensors and molecular manufacturing. Today the use of nanotechnology has been developed in the medical field that focuses on the application of technology in the rapid diagnosis, drug delivery, imaging, and therapy. Nanoparticle based drug delivery systems have made an interestingly remarkable difference in the studies using chemotherapy agent, for the physical, chemical and biological aspects. Some products of nanoparticles have been developed and used clinically.4,5 The use of nanotechnology in cancer drug discovery indicates that it can reduce damage to normal cells, power absorption and distribution; it can be set so that cancer drugs can work more optimally.6 Boesenbergia rotunda (L.) MANSF. KULTURPFL. is synonym with Boesenbergia pandurata (ROXB.)
Schltr. and also synonym with *Kaempferia pandurata* Roxb., belonging to the family of Zingiberaceae. It is a perennial herb distributed in some tropical countries including Indonesia, Malaysia, Myanmar, and Thailand. The local name in Indonesia is “Temu kunci” this plant is a common edible ingredient in many Asian countries. This herbal plant is also used as a traditional medicine to treat illnesses such as rheumatism, muscle pain, febrifuge, gout, gastrointestinal disorders, flatulence, carminative, stomach ache, dyspepsia, and peptic ulcer. In Indonesia, *B. rotunda* is typically used to prepare “jamu” a popular traditional tonic for women after childbirth as well as a beauty aid for teenage girls.

Table 1: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded chitosan (Product I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
<th>Ext (g)</th>
<th>Chito-san (% w/v)</th>
<th>NaTPP (% w/v)</th>
<th>MeanYield (mg)</th>
<th>MeanYield Colour</th>
<th>% Nano Particle Size (nm)</th>
<th>% Micro Particle Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td></td>
<td>334 ± 5.7; yellow brown</td>
<td>1.3</td>
<td>877</td>
<td>98.7</td>
<td>1005-1510</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0.2</td>
<td>0.02</td>
<td></td>
<td>444 ± 4.8; yellow brown</td>
<td>68.7</td>
<td>510-877</td>
<td>31.3</td>
<td>1005-1510</td>
</tr>
<tr>
<td>A3</td>
<td>1</td>
<td>0.3</td>
<td>0.02</td>
<td></td>
<td>395 ± 3.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-1729</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>0.4</td>
<td>0.02</td>
<td></td>
<td>523 ± 4.6; yellow brown</td>
<td>1</td>
<td>766-877</td>
<td>99</td>
<td>1005-2269</td>
</tr>
<tr>
<td>A5</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
<td>440 ± 10.1; yellow brown</td>
<td>75.8</td>
<td>389-877</td>
<td>24.2</td>
<td>1005-1151</td>
</tr>
<tr>
<td>A6</td>
<td>1</td>
<td>0.08</td>
<td>0.01</td>
<td></td>
<td>501 ± 12.8, yellow brown</td>
<td>98.1</td>
<td>389-877</td>
<td>1.9</td>
<td>1005</td>
</tr>
<tr>
<td>A7</td>
<td>1</td>
<td>0.09</td>
<td>0.01</td>
<td></td>
<td>380 ± 20.2, yellow brown</td>
<td>70.1</td>
<td>296-877</td>
<td>29.9</td>
<td>1005-1729</td>
</tr>
<tr>
<td>A8</td>
<td>1</td>
<td>0.11</td>
<td>0.01</td>
<td></td>
<td>478 ± 8.9, yellow brown</td>
<td>19.0</td>
<td>766-877</td>
<td>81.0</td>
<td>1005-1151</td>
</tr>
<tr>
<td>A9</td>
<td>1</td>
<td>0.12</td>
<td>0.01</td>
<td></td>
<td>413 ± 5.8, yellow brown</td>
<td>53.7</td>
<td>339-877</td>
<td>46.3</td>
<td>1005-1510</td>
</tr>
</tbody>
</table>

If % nanoparticle <70%, zeta potential very low and not be measured

Table 2: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded alginic acid and Ca2+ (Product II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Ca2+ (% w/v)</th>
<th>MeanYield (mg)</th>
<th>MeanYield Colour</th>
<th>% Nano Particle Size (nm)</th>
<th>% Micro Particle Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>569±1.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>576±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-3409</td>
</tr>
<tr>
<td>B3</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>894±0.9; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>3905-5122</td>
</tr>
<tr>
<td>B4</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>597±2.2, yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1318-6000</td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
</tr>
<tr>
<td>B6</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
</tr>
<tr>
<td>B7</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
<td>167±3.8, yellow brown</td>
<td>80.8</td>
<td>226-877</td>
<td>19.2</td>
<td>1005-1318</td>
</tr>
<tr>
<td>B8</td>
<td>1</td>
<td>0.1</td>
<td>0.015</td>
<td>0.1</td>
<td>227±4.3, yellow brown</td>
<td>83.3</td>
<td>259-877</td>
<td>16.7</td>
<td>1005-1981</td>
</tr>
<tr>
<td>B9</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td>0.1</td>
<td>246±3.2, yellow brown</td>
<td>90.2</td>
<td>197-877</td>
<td>9.8</td>
<td>1005-1151</td>
</tr>
<tr>
<td>B10</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.1</td>
<td>228±2.3, yellow brown</td>
<td>65.5</td>
<td>259-877</td>
<td>34.5</td>
<td>1005-1510</td>
</tr>
<tr>
<td>B11</td>
<td>1</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
<td>182±2.3, yellow brown</td>
<td>95.2</td>
<td>339-877</td>
<td>4.8</td>
<td>2269-3905</td>
</tr>
</tbody>
</table>

If % nanoparticle <70%, zeta potential very low and not be measured Ext = ethanol extract of B. rotunda; Alg = alginic acid
The synthesis of nanoparticles can use several methods such as ionic gelation, emulsification method, coacervation or precipitation method, and spray drying method. Ionic gelation method involves connecting a cross between polyelectrolyte in the presence of multivalent ion pairs. Ionic gelation is often followed by polyelectrolyte complexation with polyelectrolyte opposite. Formation the cross connecting bond will strengthen the mechanical strength of the particles formed. Polymer nanoparticles are usually made using biodegradable and hydrophilic polymers such as chitosan, gelatin and alginites.

Chitosan is a natural polysaccharide composed of \([\beta (1 \rightarrow 4) \text{glucosamine} \) (2-amino-2-deoxy-d-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-deoxy-d-glucose)]. It is widely applied in the pharmaceutical industry, food and health. Chitosan has several beneficial properties; they are anti-microbial, wound healing, anti-inflammatory, anti-oxidant, anti-tumor, anti-HIV, anti-cancer and to prevent leukorrhea. Essential oil of \(B. \ rotunda \) shows-antifungal properties against \(Aspergillus niger \), \(A. \ fumigatus \) and \(Mucor \). Jantan et al. reported that essential oil of \(B. \ rotunda \) shows antifungal properties against \(Saccharomyces cerevisiae \), \(Cryptococcus neoformans \), \(Candida albicans \), \(Candida tropicalis \), and \(Torulaspora glabrata \). The research of Taweechaisupapong et al. showed the extract \(B. \ pandurata \) very effectively kills pathogenic bacteria \(C. \ albicans \) by in vitro. In addition \(B. \ rotunda \) contains essential oils and also secondary metabolites such as pinostrobin, pinocembrin, cardamonin, panduratin A, and alpinetin. Yanti et al. reported that panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm. \(B. \ rotunda \) has similarities with \(Kaempferia rotunda \), but it contains more essential oils, and shows a characteristic odour. Previous research showed that several chemical compounds or extracts of \(K. \ rotunda \) has antibacterial activity, anti-inflammatory, analgesic, anti-tumor, anti-HIV, antifungal, and antivirus properties against \(K. \ rotunda \). Jantan et al., 2005, demonstrated that panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm. \(B. \ rotunda \) has similarities with \(Kaempferia rotunda \), but it contains more essential oils, and shows a characteristic odour. Previous research showed that several chemical compounds or extracts of \(K. \ rotunda \) has antibacterial activity, antimicrobial, wound healing, non-toxic, inexpensive, biocompatible, biodegradable, and water soluble. In the form of micro- or nanoparticles of chitosan they have many advantages that are non-toxic, unstable during use, high surface area, and can be used as a matrix for various types of drugs and extracts plants. Chitosan has a capacity to increase epithelial permeation of macromolecules through the temporary opening of tight junctions of the epithelium. In addition, chitosan is known to be biocompatible and shows very low toxicity. Compared with many other natural polymers, chitosan has a positive charge and mucogelation. The principle of the design of nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, conjugated drug-carrier, antibody complexes, and magnetic nanoparticles, are mainly based on the synthetic, natural, or biological components, including the use of synthetic polymers, ion metals, oils and lipids as the based material carrier group (delivery system). However, the potential success of these particles in the clinic depends on the consideration of important parameters such as nanoparticle fabrication strategies, efficiency of use of the drug, the potential release of the drug, and most importantly, minimal toxicity of the carrier group. In recent years, the number of products containing nanoparticles of materials has increased because it shows the physical and chemical properties that can be beneficial in drug delivery. Nanoparticles may consist of lipids, sugar, degradable or non-degradable polymers, metals and organic or inorganic compounds. Some cancer drugs have been made in the form of nanoparticles and have been approved by the FDA, for example, Abraxane (FDA approved in January 2005), a breast cancer drug which is made from taxol (paclitaxel) with albumin and has a particle size of 130 nano meters. Doxil is also an ovarian cancer drug in the form of lipid nanoparticles with polyethylene glycol (PEG). In addition there is also a cancer drug with a cholesterol-lowering drug trade name Tricor (FDA approved December 2004) in the form of colloidal nano crystal. The synthesis of nanoparticles can use several methods such as ionic gelation method, emulsification method, coacervation or precipitation method, and spray drying method. Ionic gelation method involves connecting a cross between polyelectrolyte in the presence of multivalent ion pairs. Ionic gelation is often followed by polyelectrolyte complexation with polyelectrolyte opposite. Formation the cross connecting bond will strengthen the mechanical strength of the particles formed. Polymer nanoparticles are usually made using biodegradable and hydrophilic polymers such as chitosan, gelatin and alginites.

Table 3: Synthesis nanoparticle product produced by ethanol extract of \(B. \ rotunda \) loaded Chitosan-alginic acid and \(Ca^{2+} \)

<table>
<thead>
<tr>
<th>Code</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Chi (% w/v)</th>
<th>Ca2+ (% w/v)</th>
<th>Mean Yield (mg)</th>
<th>Colour</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.015</td>
<td>592±2.2; yellow</td>
<td>brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.015</td>
<td>610±3.5; yellow</td>
<td>brown</td>
<td>1.4</td>
<td>877</td>
<td>98.6</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.015</td>
<td>427±3.4; yellow</td>
<td>brown</td>
<td>29.7</td>
<td>226-877</td>
<td>70.3</td>
<td>1005-1729</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>0.01</td>
<td>0.1</td>
<td>0.015</td>
<td>384±4.5; yellow</td>
<td>brown</td>
<td>3.6</td>
<td>877</td>
<td>96.4</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.015</td>
<td>504±1.8; yellow</td>
<td>brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1510-2269</td>
</tr>
</tbody>
</table>

Ext = ethanol extract of \(B. \ rotunda \); Alg = alginic acid; Chi = Chitosan. *if % nanoparticle <70%, zeta potential very low and not be measured.
product I they were reacted with sodium tripolyposphate (Na-TPP) at various compositions. The product II were prepared by reacting alginic acid and calcium ions at various compositions, while the product III were prepared by reacting chitosan and alginate acid and then calcium ion was added to the mixture. Chitosan is a polymer positively charged of amino groups, whereas alginate acid is a polymer of negatively charged of carboxyl groups.

MATERIALS AND METHODS

Apparatus and reagent

General glassware, analytical balance, evaporator Buchi Rotavapor R-114, magnetic stirrer, centrifuge, Scanning electron microscopy (SEM, Jeol T-300), particles size analysis (PSA, Horiba 550), Zeta potential (Malvern Zetasizer, UK), refrigerator, Spectronic 20 (Genesys) were used in this work.

Ethanol, aquabidest, chitosan (low molecular weight, Sigma), Sodium Tripoliphosphat (Na-TPP, Sigma-Aldrich), Acetic acid (p.a. Sigma), Alginic acid (p.a. Sigma), Calcium chloride (p.a. Sigma), Rhizome of B. rotunda, 1,19-diphenyl-2-picrylhydrazyl (DPPH, Aldrich), ascorbat acid (Aldrich) were used in this work without further purification.

Preparation of ethanol extract of B. rotunda

The milled dried rhizoma of B. rotunda (5 kg) was masedated by ethanol at 24 hours at three times. The filtrate is separated by filtration and evaporated using vacuum evaporator to dry to yield brown residue for about 147.6 g.

Preparation of nanoparticle product I

Nanoparticle chitosan produced by ethanol extract of B. rotunda was synthesized by ionic gelation. Ethanol extract of B. rotunda was dissolved in 35 mL ethanol and 35 mL aquadest. After homogen to the solution was added 100 mL chitosan (dissolved in acetic acid 1% v/v) at various concentrations (0.08 – 0.12 % w/v), while mixing with magnetic stirrer until homogen. The resulting solution was further added with 350 mL Nano-TPP (0.01-0.02% w/v in aquadest) at various concentration, and was kept for complete dissolution by magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12,000 rpm for 15 minute. The precipitate was washed with distilled water repeatedly and then freshdried for 24 hours.

Preparation of nanoparticle product II

Ethanol extract B. rotunda was dissolved in 35 mL of ethanol and 35 mL of distilled water and to the solution was added 100 mL of alginate acid (dissolved in 0.1 M NaOH) at various concentrations (0.1 – 0.5 % w/v) below the magnetic stirrer until homogenous. Extract and alginate acid solution is then added a solution of calcium chloride at various concentrations (0.01 – 0.1 % w/v) slowly while stirring using a magnetic stirrer at low speed and mix stored for the complete dissolution with a magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. Nanoparticles were collected by centrifugation at 12,000 rpm for 15 minutes. The precipitate was washed with distilled water repeatedly and then freshdried for 24 hours.

Preparation of nanoparticle product III

Ethanol extract of B. rotunda was dissolved in a well stiring of 35 mL ethanol and 35 mL aquadest and then into the solution was added 50 mL alginate acid (dissolved in NaOH 0.1M) at various concentrations (0.05 - 0.1 % w/v) and 50 mL chitosan (dissolved in acetic acid 1%) at various concentration (0.05 - 0.1% w/v); and the mixture was allowed to stand until homogen. The resulting solution was further added with 350 mL calcium chloride (0.015% w/v in aquadest), and was kept for complete dissolution by magnetic stirrer for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12,000 rpm for 15 minute. The precipitate were washed with distilled water repeatedly and then freshdried for 24 hours.

All resulting nanoparticles were dried and stored at refrigerator. Yield of the nanoparticles were calculated by the formula:

% yield = [weight of nanoparticles obtained][weight of sample fraction + weight of chitosan/alginate acid used for synthesis] x 100%

The characterization of this product was analyzed in term of particle size, zeta potential, and SEM (Scanning Electron Microscopy).

Biological activity as Antioxidant

Antioxidant activity was analyzed by DPPH (1,1-diphenyl-2-picrylhydrazyl) method. This method used DPPH as the source of free radical. About 5 mL of the nanoparticle was mixed with 5 mL methanolic solution of DPPH (0.12 mM) and kept in dark at room temperature for 30 minutes. The DPPH scavenging activity was determined using spectronic 20 (Genesys) at 516 nm against DPPH solution as control. The samples were tested in triplicates. The antioxidant activity was calculated as percentage of DPPH that was decreased in comparison with the control, and the inhibition activity could be calculated to determine IC50.

Statistical analysis

The data of all experiments were represented as Mean ± SD and were analyzed using Microsoft Excel (Redmond, WA) software.

RESULTS AND DISCUSSION

The synthesised nanoparticles of ethanol extract of B. rotunda was conducted with ionic gelation method using chitosan (Product I), alginate acid (Product II), chitosan-alginic acid (Product III), and their IC50 were calculated in Table 4. The IC50 is the concentration of the extract that can inhibit 50% of the DPPH radical.

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>IC50</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6. Chitosan nanoparticle(98.1%)</td>
<td>153.27</td>
<td>Less active</td>
</tr>
<tr>
<td>B9. Alginic acid nanoparticle (90.2%)</td>
<td>99.14</td>
<td>active</td>
</tr>
<tr>
<td>B11. Alginic acid nanoparticle (95.2%)</td>
<td>139.0</td>
<td>Less active</td>
</tr>
<tr>
<td>C3. Chitosan-alginic acid nanoparticle (29.7%)</td>
<td>27.05</td>
<td>active</td>
</tr>
<tr>
<td>Ethanol extract from B. rotunda</td>
<td>92.2</td>
<td>active</td>
</tr>
<tr>
<td>Positive control (Ascorbat acid)</td>
<td>3.77</td>
<td>Very active</td>
</tr>
</tbody>
</table>

IC50 > 100 µg/mL less active; 100-10 µg/mL active; < 10 µg/mL very active
acid (Product II), and a combination of chitosan-alginic acid (Product III). This method are carried out at ambient temperature, and thus the preparation is relatively simple. Data of Table 1, 2 and 3 show particle size, zeta potential, yield, and physical properties of this products. In this work, the particle size was analyzed using PSA (Particle Size Analyser), it is the dynamic light scattering (DLS) system measurement. The instrument is capable of measuring particle size in the range of 1 nm to 6 µm at concentration up to 40% w/v.

The stability of nanoparticles was analysed by zeta potential, that is to determine the surface charge of nanoparticles in solution or colloid. Nanoparticles have a surface charge that attracts a thin layer of ions of opposite charge to the nanoparticle surface. Two layers move with nanoparticles dispersed throughout the solution. Electrical potential on the second boundary layer called the zeta potential of particles and has a typical value between +100 mV to -100 mV. Zeta potential of nanoparticles with a value greater than +25 mV or less than -25 mV has a high degree of stability. Dispersions with a low zeta potential value will eventually aggregate due to Van Der Waal inter-particle attractions. A colloidal solution containing a high percentage amount of nanoparticles would show the high value of the zeta potential, so that the solution will be difficult to form a precipitate. In this work nanoparticles produced by ethanol extract of *B. rotunda* loaded with chitosan (product I) show zeta potential positive charged, but alginic acid (product II) show zeta potential negatively charged. Product III contain components nanoparticles 29.7%, so the zeta potential not measured. Products with nanoparticles of less than 70% usually indicates a low zeta potential.

In the synthesis, the formation of nanoparticles of product I are influenced by the concentration ratio of the material forming the matrix. If the ratio is too low the product tend to form microparticles. Nanoparticles of product I are obtained at a concentration ratio of chitosan / Na-TPP 8:1, with the percentage amount of nanoparticles 98.1%, and the size range of the nanoparticles were to be 389 to 877 nm, with a zeta potential of +41.87 mV. Previous research, the nanoparticle of chitosan produced by chloroform fraction of *K. rotunda* were obtained at concentration ratio of chitosan / Na-TPP 8:1, with the percentage amount of nanoparticles 98.1%, and the size range of the nanoparticles were to be 172 to 877 nm, with a zeta potential of +28.06 to +38.03 mV. The difference is due to the composition and type of components in each of the different extracts, thus affecting the character of the nanoparticles produced. Similarly, other researcher has adjusted to get a chitosan/Na-TPP ratio of 6:1, and the nanoparticles...
thus were obtained to be in the range of 300–400 nm with a positive surface charge ranging from +54 to +25 mV19. However, the nanoparticle product is highly dependent on the deacetylation of chitosan used, because it involves gelation of the protonated amino group of chitosan. The nanoparticles of product II was synthesized using calcium ion as a cross junction to form pore size of the gel. The concentration of Ca2+ has a significant effect on the stability and pore size of the gel. The nanoparticles of Product II can be optimally synthesized at a concentration of alginic acid/\textit{B. rotunda}2+ ratio of 5:1, with the precentage amount of 90.2 %, the range size of 197 to 877 nm, and with a zeta potential of -82.1 mV.

When the concentration of alginic acid/\textit{B. rotunda}2+ ratio was 2.5:1, it resulted in the precentage amount of 95.2 %, but the size ranged from 339 to 877 nm, with a zeta potential of -72.1 mV, and the mean yield was relatively low. When the concentration of calcium ion is high the gel microparticles were formed.

In this work the synthesis of product III resulted in more micro-sized gel. Unfortunately, the optimal combination to produce nanoparticles of more than 80% was not successful. This is due to the interaction of the two polymers which have an opposite charge and this tends to produce large porous gel. Furthermore the combination-nanoparticles of alginic acid/\textit{B. rotunda}2+, and ratio of 6:7 : 2:1, only resulted in the percentage of about 29.7 %, and the size range of 226 to 877 nm.

The morphology of nanoparticles produced by ethanol extract of \textit{B. rotunda} were identified using optical microscope by scanning electron microscopy (SEM). For SEM analysis, the working distance was 10 mm, beam energy was 20.0 kV, spot size was 5.0, and magnification was 5000. The nanoparticles were loaded on a double sided carbon tape and put on studs before being examined by SEM. Figure 1 shows the morphology of nanoparticles product I, II, and III, the surfaces are spherical and smooth.

The DPPH assay was used to study the free-radical scavenging capacity of these products. The results is shown in Table 4. The antioxidant activity of all nanoparticles products showed IC\textsubscript{50} of 153.27; 139.0; and 27.05 µg/mL respectively. The antioxidant activity of ethanol extract of \textit{B. rotunda} shows IC\textsubscript{50} of 92.75 µg/mL. Thereby, the nanoparticles of product I and II have antioxidant activity weaker than the starting material ethanol extract of \textit{B. rotunda}, while the nanoparticles of product III shows higher activity than the starting material ethanol extract of \textit{B. rotunda}.

CONFLICT OF INTEREST

We declare that we have no conflict of interest

ACKNOWLEDGMENT??

ABBREVIATIONS USED??

REFERENCES

Fwd: AUTHOR PROOFING

- sriatun <sriatun@uny.ac.id> 28 Maret 2019 15.54
Kepada: Sri handayani <handayani@uny.ac.id>

---------- Forwarded message ----------
From: - sriatun <sriatun@uny.ac.id>
Date: Thu, 22 Dec 2016, 10:22
Subject: Re: AUTHOR PROOFING
To: EManuscript Services <galleys@emanuscript.in>

Dear Editor
Thankyou for accepted my paper, I will send my revised proof manuscrip in attactment file.

Best regard
Sri Atun

[Kutipan teks disembunyikan]

2 lampiran

- PJ_103_16-revised manuscript.pdf 467K
- comments_form_template-des-2016.doc 774K
<table>
<thead>
<tr>
<th>Comment Number (As marked in Galley Proof)</th>
<th>Page Number, Line Number</th>
<th>As in Galley Proof</th>
<th>Modification to be done</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Page number 98-1</td>
<td>Type of article??</td>
<td>Original Article</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>98-2</td>
<td>Title:</td>
<td>SYNTHESIS OF NANOPARTICLES PRODUCED BY ETHANOL EXTRACT OF BOESENBERGIA ROTUNDA RHIZOME LOADED WITH CHITOSAN AND ALGINIC ACID AND ITS BIOLOGICAL ACTIVITY TEST</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>98-3</td>
<td>Abstract –line 1</td>
<td>Bososenbergia rotunda</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords</td>
<td>Nanoparticles chitosan; alginic acid; Combination of chitosan-alginic acid; B. Rotunda; antioxidant</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>99-1</td>
<td>Running title missing?</td>
<td>Synthesis of nanoparticles produced by ethanol extract of B. rotunda</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>99-2</td>
<td>Table-1</td>
<td>Synthesis nanoparticle product produced by ethanol extract of B. rotunda loaded chitosan</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>99-3</td>
<td>Table-2-line 1 & 2</td>
<td>Ca$^{2+}$</td>
<td></td>
</tr>
</tbody>
</table>
| 7. | 101-1 | Matherials and Methods | \[
\text{1,1,9-diphenyl-2-picrylhydrazyl (DPPH, Aldrich)} \\
\text{ascorbat acid}
\]
| 8. | 101-2 | B. rotunda | B. rotunda |
| 9. | 101-3 | Preparation of nanoparticle product I..........................and then freshdried for 24 hours | \[
\text{and were dried by a freeze dryer.}
\]
| 10. | | Preparation of nanoparticle product II..........................and then freshdried for 24 hours | \[
\text{and were dried by a freeze dryer.}
\]
| 11. | 101-4 | Preparation of nanoparticle product IIIand then freshdried for 24 hours | \[
\text{and were dried by a freeze dryer.}
\]
| 12. | 101-5 | | \[
\text{1,1-diphenyl-2-picrylhydrazyl}
\text{2,2-diphenyl-1-picrylhydrazyl}
\]
| 13. | 101-6 | Table 4.. title..................B. rotunda | \[
\text{IC}_{50}
\text{B. rotunda}
\]
| 14. | 101-7 | Positive control (Ascobat acid) | Positive control (Ascorbic acid) |
| 15. | 102-1 | Figure 1.......................... | Figure 1. SEM of the nanoparticles (A) chitosan (product I); (B) Alginic acid (product II); and (C) Combination of chitosan-alginic acid (product III) produced by ethanol extract of *B. rotunda* |
| 16. | 103-1 | Acknowledment ? | Acknowledment: We would like to thank Minister Research and Technology Directorate of Higher Education, Indonesia for the research funding an excellent research universities grant (RUPT-IDB, Number: 155/SP2H/LT/DRPM/III/2016, 10 Mart 2016. We also express our gratitude to Prof. K.H. Sugiyarto from Dept. Chem.ed. Yogyakarta State University who has critical review on this manuscript. |
| 17. | | | |
| 18. | | | |
| 19. | | | |

All the corrections have been incorporated using comments tool of PDF or scanned jpg image of pages can also be marked using red pen; Kindly send attachment to galleys@emanucript.in
<table>
<thead>
<tr>
<th>About Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sri Atun</td>
</tr>
<tr>
<td>Lecturer in the Department of Chemistry Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, in the field of natural products. Experience research has been done includes the exploration and its biological activities test from plants, especially from the family Dipterocarpaceae, Gnetaceae, and Zingiberaceae.</td>
</tr>
<tr>
<td>Dr. Sri Handayani</td>
</tr>
<tr>
<td>Lecturer in the Department of Chemistry Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, in the field of synthesis organic</td>
</tr>
</tbody>
</table>
SYNTHESIS OF NANOPARTICLES PRODUCED BY ETHANOL EXTRACT OF BOesenbergia rotunda Rhizome Loaded with Chitosan and Alginic Acid and its Biological Activity

Sri Atun*, Sri Handayani

ABSTRACT
This work reports the synthesis of nanoparticles produced by ethanol extract of Boesenbergia rotunda rhizome loaded with chitosan and alginic acid, and its biological activity test as antioxidant. The method of synthesis of nanoparticles used an ionic gelation. Activity of the nanoparticle products as antioxidant was tested by the DPPH method. Results of this work showed that nanoparticles chitosan produced by ethanol extract B. rotunda can be synthesized at a concentration (% w/v) of chitosan/ Na-TPP and ratio of 8:1, the size range of the nanoparticles were 389 to 877 nm, with a zeta potential of +41.87 mV, and precentage nanoparticle 98.1%. The corresponding nanoparticles of alginic acid can be synthesized at a concentration (% w/v) of alginic acid/ CaCl2 and ratio of 5:1, the size range of the nanoparticles were 197 to 877 nm, with a zeta potential of -82.1 mV, and precentage nanoparticle 90.2%. Furthermore, nanoparticles result of the combination of alginic acid–chitosan can be synthesized at a concentration (% w/v) alginic acid/chitosan/calcium chloride and ratio of 6:7:2, the size range of the nanoparticle were 226 to 877 nm, and precentage nanoparticle 29.7%. The morphology of each nanoparticle products was spherical and a smooth surface. The chitosan-alginic acid nanoparticles show higher activity than the starting material ethanol extract of B. rotunda.

Keywords: Nanoparticles chitosan, alginic acid, chitosan-alginic acid, B. rotunda, antioxidant.

INTRODUCTION
Dental caries and oral disease are often found in Indonesia. Both of them can affect the health of all societies, including vulnerable to gum disease. Dental caries is a multifactorial disease, caused by factors of the surface of the tooth itself, the substrate, microorganisms and time. The disease is also strongly associated as a cause of coronary heart disease, kidney failure, stomach cancer, colon cancer, and oral cancer. The negative impact is easily seen as a plaque attached to the tooth surface, which if not addressed could cause damage to the email that cause caries or cavities. Some antibiotics have been found to prevent and reduce the formation of plaque, but they can cause side effects when used continuously, namely the emergence of a strain of bacteria resistant to antibiotics and cannot be absorbed by tissues. The use of antibiotics often results in resistant, while the use of antiseptics, such as chlorhexidine can prevent even can remove plaque that has been formed, but the side effects is the discoloration of the teeth and tongue and taste disorders after use. Therefore, it is necessary to find new antibacterial natural ingredients that have no side effects.

Nanotechnology is the study of particles in the size range of 1-1000 nm. The nano scale will bring up the physical, chemical, and biological characteristics. Nanotechnology has been applied in various fields such as electronics, energy, space, medicine, food, chemical sensors and molecular manufacturing. Today the use of nanotechnology has been developed in the medical field that focuses on the application of technology in the rapid diagnosis, drug delivery, imaging, and therapy. Nanoparticle based drug delivery systems have made an interestingly remarkable difference in the studies using chemotherapy agent, for the physical, chemical and biological aspects. Some products of nanoparticles have been developed and used clinically. The use of nanotechnology in cancer drug discovery indicates that it can reduce damage to normal cells, power absorption and distribution; it can be set so that cancer drugs can work more optimally. Boesenbergia rotunda (L.) MANSF. KULTURPFL. is synonym with Boesenbergia pandurata (ROXB.)
SCHLTR. and also synonym with *Kaempferia pandurata* ROXB., belonging to the family of Zingiberaceae. It is a perennial herb distributed in some tropical countries including Indonesia, Malaysia, Myanmar, and Thailand. The local name in Indonesia is “Temu kunci” this plant is a common edible ingredient in many Asian countries. This herbal plant is also used as a traditional medicine to treat illnesses such as rheumatism, muscle pain, febrifuge, gout, gastrointestinal disorders, flatulence, carminative, stomach ache, dyspepsia, and peptic ulcer. In Indonesia, *B. rotunda* is typically used to prepare “jamu” a popular traditional tonic for women after childbirth as well as a beauty aid for teenage girls.

Table 1: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded chitosan (Product I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Ext (g)</th>
<th>Chito-san (% w/v)</th>
<th>NaTPP (% w/v)</th>
<th>Mean Yield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td>334 ± 5.7; yellow brown</td>
<td>1.3</td>
<td>877</td>
<td>98.7</td>
<td>1005-1510</td>
<td>*</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0.2</td>
<td>0.02</td>
<td>444 ± 4.8; yellow brown</td>
<td>68.7</td>
<td>510-877</td>
<td>31.3</td>
<td>1005-1510</td>
<td>+26.83</td>
</tr>
<tr>
<td>A3</td>
<td>1</td>
<td>0.3</td>
<td>0.02</td>
<td>395 ± 3.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-1729</td>
<td>*</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>0.4</td>
<td>0.02</td>
<td>523 ± 4.6; yellow brown</td>
<td>1</td>
<td>766-877</td>
<td>99</td>
<td>1005-2269</td>
<td>*</td>
</tr>
<tr>
<td>A5</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>440 ± 10.1; yellow brown</td>
<td>75.8</td>
<td>389-877</td>
<td>24.2</td>
<td>1005-1151</td>
<td>+14.40</td>
</tr>
<tr>
<td>A6</td>
<td>1</td>
<td>0.08</td>
<td>0.01</td>
<td>501 ± 12.8; yellow brown</td>
<td>98.1</td>
<td>389-877</td>
<td>1.9</td>
<td>1005</td>
<td>+41.87</td>
</tr>
<tr>
<td>A7</td>
<td>1</td>
<td>0.09</td>
<td>0.01</td>
<td>380 ± 20.2; yellow brown</td>
<td>70.1</td>
<td>296-877</td>
<td>29.9</td>
<td>1005-1729</td>
<td>*</td>
</tr>
<tr>
<td>A8</td>
<td>1</td>
<td>0.11</td>
<td>0.01</td>
<td>478 ± 8.9; yellow brown</td>
<td>19.0</td>
<td>766-877</td>
<td>81.0</td>
<td>1005-1151</td>
<td>*</td>
</tr>
<tr>
<td>A9</td>
<td>1</td>
<td>0.12</td>
<td>0.01</td>
<td>413 ± 5.8; yellow brown</td>
<td>53.7</td>
<td>339-877</td>
<td>46.3</td>
<td>1005-1510</td>
<td>*</td>
</tr>
</tbody>
</table>

*If % nanoparticle <70%, zeta potential very low and not be measured

Table 2: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded alginic acid and Ca²⁺ (Product II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Ca²⁺ (% w/v)</th>
<th>Mean Yield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>569±1.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
<td>*</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>576±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-3409</td>
<td>*</td>
</tr>
<tr>
<td>B3</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>894±0.9; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>3905-5122</td>
<td>*</td>
</tr>
<tr>
<td>B6</td>
<td>1</td>
<td>0.1</td>
<td>0.4</td>
<td>597±2.2; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1318-6000</td>
<td>*</td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
<td>*</td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
<td>*</td>
</tr>
<tr>
<td>B7</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>167±3.8, yellow brown</td>
<td>80.8</td>
<td>226-877</td>
<td>19.2</td>
<td>1005-1318</td>
<td>-89.5</td>
</tr>
<tr>
<td>B8</td>
<td>1</td>
<td>0.1</td>
<td>0.015</td>
<td>227±4.3, yellow brown</td>
<td>83.3</td>
<td>259-877</td>
<td>16.7</td>
<td>1005-1981</td>
<td>-84.7</td>
</tr>
<tr>
<td>B9</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td>246±3.2, yellow brown</td>
<td>90.2</td>
<td>197-877</td>
<td>9.8</td>
<td>1005-1151</td>
<td>-82.1</td>
</tr>
<tr>
<td>B10</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>228±2.3, yellow brown</td>
<td>65.5</td>
<td>259-877</td>
<td>34.5</td>
<td>1005-1510</td>
<td>*</td>
</tr>
<tr>
<td>B11</td>
<td>1</td>
<td>0.1</td>
<td>0.04</td>
<td>182±2.3, yellow brown</td>
<td>95.2</td>
<td>339-877</td>
<td>4.8</td>
<td>2269-3905</td>
<td>-72.1</td>
</tr>
</tbody>
</table>

*If % nanoparticle <70%, zeta potential very low and not be measured

Ext = ethanol extract of *B. rotunda*; Alg = alginic acid
and to prevent leukorrhea. Essential oil of *B. rotunda* shows-antifungal properties against *Aspergillus niger*, *A. fumigatus* and *Mucor*. Jantan *et al.* reported that essential oil of *B. rotunda* shows antifungal properties against *Saccharomyces cerevisiae*, *Cryptococcus neoformans*, *Candida albicans*, *Candida tropicalis*, and *Torulopsis glabrata*. The research of Taweechaiapong *et al.*, showed the extract *B. pandurata* very effectively kills pathogenic bacteria *C. albicans* by in vitro. In addition *B. rotunda* contains essential oils and also secondary metabolites such as pinostramin, pinocembrin, cardamonin, panduratin A, and alpinetin. Yanti *et al.*, demonstrated that panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm. *B. rotunda* has similarities with *Kaempferia rotunda*, but it contains more essential oils, and shows a characteristic odour. Previous research showed that several chemical compounds or extracts of *K. rotunda* has antibacterial activity, anti-inflammatory, analgesic, antipyretic, anti-tumor, anti-HIV, anti-inflammatory, anti-thrombotic and anti-oxidant activities. To improve the stability, solubility and activity of extracts and pure compounds of *B. rotunda* it is necessarily developed into a nanoparticle product.

The principles of the design of nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, conjugated drug-carrier, antibody complexes, and magnetic nanoparticles, are mainly based on the synthetic, natural, or biological components, including the use of synthetic polymers, ion metals, oils and lipids as the based material carrier group (delivery system). However, the potential success of these particles in the clinic depends on the consideration of important parameters such as nanoparticle fabrication strategies, efficiency of use of the drug, the potential release of the drug, and most importantly, minimal toxicity of the carrier group. In recent years, the number of products containing nanoparticles of materials has increased because it shows the physical and chemical properties that can be beneficial in drug delivery. Nanoparticles may consist of lipids, sugar, degradable or non-degradable polymers, metals and organic or inorganic compounds. Some cancer drugs have been made in the form of nanoparticles and have been approved by the FDA, for example, Abraxane (FDA approved in January 2005), a breast cancer drug which is made from taxol (paclitaxel) tied with albumin and has a particle size of 130 nano meters. Doxil is also an ovarian cancer drug in the form of lipid nanoparticles with polyethylene glycol (PEG). In addition there is also a cancer drug with a cholesterol-lowering drug name Tricor (FDA approved December 2004) in the form of colloidal nano crystal.

The synthesis of nanoparticles can use several methods such as ion gelation method, emulsifications method, coacervation or precipitation method, and spray drying method. Ionic gelation method involves connecting a cross between polyelectrolyte in the presence of multivalent ion pairs. Ionic gelation is often followed by polyelectrolyte complexation with polyelectrolyte opposite. Formation the cross connecting bond will strengthen the mechanical strength of the particles formed. Polymer nanoparticles are usually made using biodegradable and hydrophilic polymers such as chitosan, gelatin and alginites.

Chitosan is a natural polysaccharide composed of β(1 → 4) glucosamine (2-amino-2-deoxy-d-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-deoxy-d-glucose). It is widely applied in the pharmaceutical industry, food and health. Chitosan has several beneficial properties; they are anti-microbial, wound healing, non-toxic, inexpensive, biocompatible, biodegradable, and water soluble. In the form of micro- or nanoparticles of chitosan they have many advantages that are non-toxic, unstable during use, high surface area, and can be used as a matrix for various types of drugs and extracts plants. Chitosan has a capacity to increase epithelial permeation of macromolecules through the temporary opening of tight junctions of the epithelium. In addition, chitosan is known to be biocompatible and shows low toxicity. Compared with many other natural polymers, chitosan has a positive charge and mucoadhesive. The principle of this method is the existence of ionic interactions between the amino groups of a positively charged chitosan and substances negatively charged poly-anion to form a three-dimensional network structure. Cross-linker poly-anion which is the most widely used is sodium tripolyphosphate, because it is not toxic and has a multivalent. Chitosan nanoparticles can avoid the use of organic solvents as well as prevent the damage to the active ingredient of the drugs. Making products using chitosan nanoparticles as a drug delivery can be achieved as described by Wu *et al.*

Alginate is a linear polysaccharide that is soluble in water. This compound is extracted from brown seaweed and has a linear polymer structure composed by bonding (1 → 4) α-L-guluronic and β-D-mannuronic. Alginate has been reported to be mucoadhesive, biodegradable, and biocompatible and has the potential for a variety of pharmaceutical and biomedical applications such as drug delivery systems and cell encapsulation. Alginate micro- and nano-particles can be obtained easily by inducing gelation with calcium ions. It is an easy-gel which can be used to generate a pre-gel composed of aggregates which are very small particles of gel. A layer of polyelectrolyte complexes can be formed by the addition of an aqueous solution of polycationic such as Poly-L-lysine.

This work has been made to produce nanoparticles of the ethanol extract of *B. rotunda* loaded with chitosan (product I), alginic acid (product II), and a combination of chitosan - algic acid (product III). To make the

Table 3: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded Chitosan-alginic acid and Ca2+ (Product III)

<table>
<thead>
<tr>
<th>Code Formula</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Chi (% w/v)</th>
<th>Ca2+ (% w/v)</th>
<th>Mean Yield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.015</td>
<td>592±2.2; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.015</td>
<td>610±3.5; yellow brown</td>
<td>1.4</td>
<td>877</td>
<td>98.6</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.015</td>
<td>427±3.4; yellow brown</td>
<td>29.7</td>
<td>226-877</td>
<td>70.3</td>
<td>1005-1729</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>0.01</td>
<td>0.1</td>
<td>0.1</td>
<td>384±4.5; yellow brown</td>
<td>3.6</td>
<td>877</td>
<td>96.4</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.015</td>
<td>504±1.8; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1510-2269</td>
</tr>
</tbody>
</table>

Ext = ethanol extract of *B. rotunda*; Alg = alginic acid; Chi = Chitosan. *if % nanoparticle <70%, zeta potential very low and not be measured*
product I they were reacted with sodium tripolyphosphate (Na-TPP) at various compositions. The product II were prepared by reacting algic acid and calcium ions at various compositions, while the product III were prepared by reacting chitosan and algic acid and then calcium ion was added to the mixture. Chitosan is a polymer positively charged of amino groups, whereas algic acid is a polymer of negatively charged of carboxyl groups.

MATERIALS AND METHODS

Apparatus and reagent

General glassware, analytical balance, evaporator Buchi Rotavapor R-114, magnetic stirrer, centrifuge, Scanning electron microscopy (SEM, Jeol T-300), particles size analysis (PSA, Horiba 550), Zeta potential (Malvern Zetasizer, UK), refrigerator, Spectronic 20 (Genesys) were used in this work.

Ethanol, aquabidest, chitosan (low molecular weight, Sigma), Sodium Tripoliphosphat (Na-TPP, Sigma-Aldrich), Acetic acid (p.a. Sigma), Alginic acid (p.a. Sigma), calcium chloride (p.a. Sigma), Rhizome of *B. rotunda*, 1,10-diphenyl-2-picrylhydrazil (DPPH, Aldrich), ascorbat acid (Aldrich) were used in this work without further purification.

Preparation of ethanol extract of *B. rotunda*

The milled dried rhizoma of *B. rotunda* (5 kg) was maserated by ethanol at 24 hours at three times. The filtrate is separated by filtration and evaporated using vacuum evaporator to dry to yield brown residue for about 147.6 g.

Preparation of nanoparticle product I

Nanoparticle chitosan produced by ethanol extract of *B. rotunda* was synthesized by ionic gelation. Ethanol extract of *B. rotunda* was dissolved in 35 mL ethanol and 35 mL aquadest. After homogen to the solution was added 100 ml chitosan (dissolved in acetic acid 1% v/v) at various concentrations (0.08 – 0.12 % w/v), while mixing with magnetic stirrer until homogen. The resulting solution was further added with 350 mL Na-TPP (0.01-0.02% w/v in aquadest) at various concentrations, and was kept for complete dissolution by magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12.000 rpm for 15 minutes. The precipitate was washed with distilled water repeatedly and then fresh dried for 24 hours.

Preparation of nanoparticle product II

Ethanol extract *B. rotunda* was dissolved in 35 mL of ethanol and 35 mL of distilled water and to the solution was added 100 mL of algic acid (dissolved in 0.1 M NaOH) at various concentrations (0.1 – 0.5 % w/v) below the magnetic stirrer until homogenous. Extract and algic acid solution is then added a solution of calcium chloride at various concentrations (0.01 – 0.1 % w/v) slowly while stirring using a magnetic stirrer at low speed and mix stored for the complete dissolution with a magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. Nanoparticles were collected by centrifugation at 12.000 rpm for 15 minutes. The precipitate was washed with distilled water repeatedly and then fresh dried for 24 hours.

Preparation of nanoparticle product III

Ethanol extract of *B. rotunda* was dissolved in a well stiring of 35 mL ethanol and 35 mL aquadest and then into the solution was added 50 mL algic acid (dissolved in NaOH 0.1M) at various concentrations (0.05 - 0.1 % w/v) and 50 mL chitosan (dissolved in acetic acid 1%) at various concentration (0.05 - 0.1% w/v); and the mixture was allowed to stand until homogen. The resulting solution was further added with 350 mL calcium chloride (0.015% w/v in aquadest), and was kept for complete dissolution by magnetic stirrer for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12.000 rpm for 15 minutes. The precipitate was washed with distilled water repeatedly and then fresh dried for 24 hours.

All resulting nanoparticles were dried and stored at refrigerator. Yield of the nanoparticles were calculated by the formula:

\[
\text{% yield} = \frac{\text{weight of nanoparticles obtained}}{\text{weight of sample fraction} + \text{weight of chitosan/algic acid used for synthesis}} \times 100\%
\]

The characterization of this product was analyzed in term of particle size, zeta potential, and SEM (Scanning Electron Microscopy).

Biological activity as Antioxidant

Antioxidant activity was analyzed by DPPH (1,1-diphenyl-2-picrylhydrazil) method. This method used DPPH as the source of free radical. About 5 mL of the nanoparticle was mixed with 5 mL methanolic solution of DPPH (0.12 mM) and kept in dark at room temperature for 30 minutes. The DPPH scavenging activity was determined using spectroton 20 (Genesys) at 516 nm against DPPH solution as control. The samples were tested in triplicates. The antioxidant activity was calculated as percentage of DPPH that was decreased in comparison with the control, and the inhibition activity could be calculated to determine IC\(_{50}\).

Statistical analysis

The data of all experiments were represented as Mean ± SD and were analyzed using Microsoft Excel (Redmond, WA) software.

RESULTS AND DISCUSSION

The synthesised nanoparticles of ethanol extract of *B. rotunda* was conducted with ionic gelation method using chitosan (Product I), algic acid...
acid (Product II), and a combination of chitosan-alginic acid (Product III). This method are carried out at ambient temperature, and thus the preparation is relatively simple. Data of Table 1, 2 and 3 show particle size, zeta potential, yield, and physical properties of this products. In this work, the particle size was analyzed using PSA (Particle Size Analyser), it is the dynamic light scattering (DLS) system measurement. The instrument is capable of measuring particle size in the range of 1 nm to 6 µm at concentration up to 40% w/v.

The stability of nanoparticles was analysed by zeta potential, that is to determine the surface charge of nanoparticles in solution or colloid. Nanoparticles have a surface charge that attracts a thin layer of ions of opposite charge to the nanoparticle surface. Two layers move with nanoparticles dispersed throughout the solution. Electrical potential on the second boundary layer called the zeta potential of particles and has a typical value between +100 mV to -100 mV. Zeta potential of nanoparticles with a value greater than +25 mV or less than -25 mV has a high degree of stability. Dispersions with a low zeta potential value will eventually aggregate due to Van Der Waal inter-particle attractions. A colloidal solution containing a high percentage amount of nanoparticles would show the high value of the zeta potential, so that the solution will be difficult to form a precipitate. In this work nanoparticles produced by ethanol extract of B. rotunda loaded with chitosan (product I) show zeta potential positive charged, but alginic acid (product II) show zeta potential negatively charged. Product III contain components nanoparticles 29.7%, so the zeta potential not measured. Products with nanoparticles of less than 70% usually indicates a low zeta potential.

In the synthesis, the formation of nanoparticles of product I are influenced by the concentration ratio of the material forming the matrix. If the ratio is too low the product tend to form microparticles. Nanoparticles of product I are obtained at a concentration ratio of chitosan / Na-TPP 8:1, with the percentage amount of nanoparticles 98.1%, and the size ranges of the nanoparticles were to be 389 to 877 nm, with a zeta potential of +41.87 mV. Previous research, the nanoparticle of chitosan produced by chloroform fraction of K. rotunda were obtained at concentration ratio of chitosan / Na-TPP 8:1, with the percentage amount of nanoparticles 98.1%, and the size ranges of the nanoparticles were to be 389 to 877 nm, with a zeta potential of +41.87 mV. The difference is due to the composition and type of components in each of the different extracts, thus affecting the character of the nanoparticles produced. Similarly, other researcher has adjusted to get a chitosan/Na-TPP ratio of 6:1, and the nanoparticles
thus were obtained to be in the range of 300–400 nm with a positive surface charge ranging from +54 to +25 mV.19 However, the nanoparticle product is highly dependent on the deacetylation of chitosan used, because it involves gelation of the protonated amino group of chitosan. The nanoparticles of product II was synthesized using calcium ion as a cross junction to form pore size of the gel. The concentration of Ca2+ has a significant effect on the stability and pore size of the gel. The nanoparticles of Product II can be optimally synthesized at a concentration of alginic acid / chitosan / calcium ratio of 5:1, with the percentage amount of 90.2 %, the range size of 197 to 877 nm, and with a zeta potential of -82.1 mV. When the concentration of alginic acid / Ca2+ ratio was 2.5:1, it resulted in the percentage amount of 95.2 %, but the size ranged from 339 to 877 nm, with a zeta potential of -72.1 mV, and the mean yield was relatively low. When the concentration of calcium ion is high the gel microparticles were formed.

In this work the synthesis of product III resulted in more micro-sized gel. Unfortunately, the optimal combination to produce nanoparticles of more than 80% was not successful. This is due to the interaction of the two polymers which have an opposite charge and this tends to produce large porous gel. Furthermore the combination-nanoparticles of alginic acid / chitosan / calcium ratio of 6.7:2:1, only resulted in the percentage of about 29.7 %, and the size range of 226 to 877 nm.

The morphology of nanoparticles produced by ethanol extract of B. rotunda were identified using optical microscope by scanning electron microscopy (SEM). For SEM analysis, the working distance was 10 mm, beam energy was 20.0 kV, spot size was 5.0, and magnification was 5000. The nanoparticles were loaded on a double sided carbon tape and put on studs before being examined by SEM. Figure 1 shows the morphology of nanoparticles product I, II, and III, the surfaces are spherical and smooth.

The DPPH assay was used to study the free-radical scavenging capacity of these products. The results is shown in Table 4. The antioxidant activity of all nanoparticles products showed IC\textsubscript{50} of 153.27; 139.0; and 27.05 \textmu g/mL respectively. The antioxidant activity of ethanol extract of B. rotunda shows IC\textsubscript{50} of 92.75 \textmu g/mL. Thereby, the nanoparticles of product I and II have antioxidant activity weaker than the starting material ethanol extract of B. rotunda, while the nanoparticles of product III shows higher activity than the starting material ethanol extract of B. rotunda.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

REFERENCES

Dear Author,

We have done the corrections kindly provide further corrections if any, and please provide abbreviations used.

Regards

Umar

On Thu, Dec 22, 2016 at 8:52 AM, -sriatun <sriatun@uny.ac.id> wrote:

Dear Editor

Thankyou for acepted my paper, I will send my revised proof manuscrip in attactment file.

Best regard
Sri Atun

2016-12-21 19:01 GMT+07:00 EManuscript Services <galleys@emanuscript.in>:

Dear Author,

Please find the Galley Proof for your manuscript to be published in forthcoming issue of “PJ” scheduled to launch soon. The galley proof is attached to this email. You are required to send the corrections (If any) using the Comment tool available in Acrobat X: [http://get.adobe.com/reader/] or as scanned image files in JPG format along with the comments form within 2 Days. Please reply this email at priority. Please note, we may not be able to do second corrections (If any) apart from the first corrections that are received. The manuscript will be further processed for web publication. Hence, thorough checking is expected from your side during this galley proofing.

Kindly submit the corrections within 48 hours.

Thanks & Regards,

Umar
--

Administrative Office
EManuscript (Publishing)
[A publishing division of Phcog.Net]
#17, II Floor, Buddha Vihar Road
Cox Town, Bangalore 560 046, INDIA

L : +91-80-65650760
E : galleys@emanuscript.in
W : www.phcog.net | www.emanuscript.in

Universitas Negeri Yogyakarta
www.uny.ac.id

[Kutipan teks disembunyikan]

PJ_103_16.pdf
492K
Synthesis of Nanoparticles Produced by Ethanol Extract of Boisenbergia rotunda Rhizome Loaded with Chitosan and Alginic Acid and its Biological Activity test

Sri Atun*, Sri Handayani

ABSTRACT

Introduction: B. rotunda used as a traditional medicine to treat illnesses such as rheumatism, muscle pain, febrifuge, gout, gastrointestinal disorders, flatulence, carminative, stomach ache, dyspepsia, and peptic ulcer. To enhance the stability, solubility and activity of the extract B. rotunda, should be developed into a product nanoparticles. Objective: This work reports the synthesis of nanoparticles produced by ethanol extract of Boisenbergia rotunda rhizome loaded with chitosan and alginic acid, and its biological activity test as antioxidant. Method: The synthesis of nanoparticles used an ionic gelation. Activity of the nanoparticle products as antioxidant was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Results: This work showed that nanoparticles chitosan produced by ethanol extract B. rotunda can be synthesized at a concentration (% w/v) of chitosan/ Na-TPP (sodium tripolyphosphate) and ratio of 8: 1, the size range of the nanoparticles were 197 to 877 nm, with a zeta potential of -82.1 mV, and percentage nanoparticle 90.2%. Furthermore, nanoparticles result of the combination of alginic acid–chitosan can be synthesized at a concentration (% w/v) alginic acid/chitosan/ca_{2}+ and ratio of 5: 1, the size range of the nanoparticles were 179 to 877 nm, with a zeta potential of -82.1 mV, and perpercentage nanoparticle 90.2%. The morphology of each nanoparticle products was spherical and a smooth surface. The chitosan-alginic acid nanoparticles show higher activity than the starting material ethanol extract of B. rotunda.

Keywords: Nanoparticles chitosan, alginic acid, chitosan-alginic acid combination, B. rotunda, antioxidant.

INTRODUCTION

Dental caries and oral disease are often found in Indonesia. Both of them can affect the health of all sections of society, including vulnerable to gum disease. Dental caries is a multifactorial disease, caused by factors of the surface of the tooth itself, the substrate, microorganisms and time. The disease is also strongly associated as a cause of coronary heart disease, kidney failure, stomach cancer, colon cancer, and oral cancer. The negative impact is easily seen as a plaque attached to the tooth surface, which if not addressed could cause damage to the email that cause caries or cavities. Some antibiotics have been found to prevent and reduce the formation of plaque, but they can cause side effects when used continuously, namely the emergence of a strain of bacteria resistant to antibiotics and cannot be absorbed by tissues. The use of antibiotics often results in resistant, while the use of antiseptics, such as chlorhexidine can prevent even this situation from occurring. Therefore, it is necessary to find new antibacterial natural ingredients that have no side effects.

Nanotechnology has been applied in various fields such as electronics, energy, space, medicine, food, chemical sensors and molecular manufacturing. Today the use of nanotechnology has been developed...
in the medical field that focuses on the application of technology in the rapid diagnosis, drug delivery, imaging, and therapy. Nanoparticle based drug delivery systems have made an interestingly remarkable difference in the studies using chemotherapy agent, for the physical, chemical and biological aspects. Some products of nanoparticles have been developed and used clinically.4,5 The use of nanotechnology in cancer drug discovery indicates that it can reduce damage to normal cells, power absorption and distribution; it can be set so that cancer drugs can work more optimally.6

| Table 1: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded chitosan (Product I) |
|---|---|---|---|---|---|---|---|---|---|
| Code | Ext (g) | Chitosan (% w/v) | NaTPP (% w/v) | MeanYield (mg) | % Nano Particle | Size (nm) | % Micro Particle | Size (µm) | Zeta Potensial (mV) |
| A1 | 1 | 0.1 | 0.02 | 334 ± 5.7; yellow brown | 1.3 | 877 | 98.7 | 1005-1510 | * |
| A2 | 1 | 0.2 | 0.02 | 444 ± 4.8; yellow brown | 68.7 | 510-877 | 31.3 | 1005-1510 | +26.83 |
| A3 | 1 | 0.3 | 0.02 | 395 ± 3.3; yellow brown | 0 | - | 100 | 1005-1729 | * |
| A4 | 1 | 0.4 | 0.02 | 523 ± 4.6; yellow brown | 1 | 766-877 | 99 | 1005-2269 | * |
| A5 | 1 | 0.1 | 0.01 | 440 ± 10.1; yellow brown | 75.8 | 389-877 | 24.2 | 1005-1151 | +14.40 |
| A6 | 1 | 0.08 | 0.01 | 501 ± 12.8, yellow brown | 98.1 | 389-877 | 1.9 | 1005 | +41.87 |
| A7 | 1 | 0.09 | 0.01 | 380 ± 20.2, yellow brown | 70.1 | 296-877 | 29.9 | 1005-1729 | * |
| A8 | 1 | 0.11 | 0.01 | 478 ± 8.9, yellow brown | 19.0 | 766-877 | 81.0 | 1005-1151 | * |
| A9 | 1 | 0.12 | 0.01 | 413 ± 5.8, yellow brown | 53.7 | 339-877 | 46.3 | 1005-1510 | * |

*If % nanoparticle <70%, zeta potential very low and not be measured

| Table 2: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded alginic acid and Ca²⁺ (Product II) |
|---|---|---|---|---|---|---|---|---|---|
| Code | Ext (g) | Alg (% w/v) | Ca²⁺ (% w/v) | MeanYield (mg) | % Nano Particle | Size (nm) | % Micro Particle | Size (µm) | Zeta Potensial (mV) |
| B1 | 1 | 0.1 | 0.1 | 569±1.3; yellow brown | 0 | - | 100 | 2269-3409 | * |
| B2 | 1 | 0.3 | 0.1 | 576±2.5; yellow brown | 0 | - | 100 | 1005-3409 | * |
| B3 | 1 | 0.5 | 0.1 | 894±0.9; yellow brown | 0 | - | 100 | 3905-5122 | * |
| B6 | 1 | 0.1 | 0.4 | 597±2.2, yellow brown | 0 | - | 100 | 1318-6000 | * |
| B5 | 1 | 0.1 | 0.3 | 637±2.5; yellow brown | 0 | - | 100 | 1151-1318 | * |
| B5 | 1 | 0.1 | 0.3 | 637±2.5; yellow brown | 0 | - | 100 | 1151-1318 | * |
| B7 | 1 | 0.1 | 0.01 | 167±3.8, yellow brown | 80.8 | 226-877 | 19.2 | 1005-1318 | -89.5 |
| B8 | 1 | 0.1 | 0.015 | 227±4.3, yellow brown | 83.3 | 259-877 | 16.7 | 1005-1981 | -84.7 |
| B9 | 1 | 0.1 | 0.02 | 246±3.2, yellow brown | 90.2 | 197-877 | 9.8 | 1005-1151 | -82.1 |
| B10 | 1 | 0.1 | 0.03 | 228±2.3, yellow brown | 65.5 | 259-877 | 34.5 | 1005-1510 | * |
| B11 | 1 | 0.1 | 0.04 | 182±2.3, yellow brown | 95.2 | 339-877 | 4.8 | 2269-3905 | -72.1 |

*If % nanoparticle <70%, zeta potential very low and not be measured Ext = ethanol extract of B. rotunda; Alg = alginic acid

Pharmacognosy Journal, Vol 9, Issue 1, Jan-Feb, 2017

99
Table 3: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded Chitosan-alginic acid and Ca

<table>
<thead>
<tr>
<th>Code</th>
<th>Ext (% w/v)</th>
<th>Alg (% w/v)</th>
<th>Chi (% w/v)</th>
<th>Ca (%)</th>
<th>Mean Yield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.15</td>
<td>592±2.2; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.15</td>
<td>610±3.5; yellow brown</td>
<td>1.4</td>
<td>877</td>
<td>98.6</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.15</td>
<td>427±3.4; yellow brown</td>
<td>29.7</td>
<td>226-877</td>
<td>70.3</td>
<td>1005-1729</td>
</tr>
<tr>
<td>C4</td>
<td>0.01</td>
<td>0.1</td>
<td>0.03</td>
<td>0.15</td>
<td>384±4.5; yellow brown</td>
<td>3.6</td>
<td>877</td>
<td>96.4</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.15</td>
<td>504±1.8; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1510-2269</td>
</tr>
</tbody>
</table>

Ext = ethanol extract of *B. rotunda*; Alg = alginic acid; Chi = Chitosan. *if % nanoparticle <70%, zeta potential very low and not be measured

Boesenbergia rotunda (L.) MANSF. KULTURPFL. is synonym with *Boesenbergia pandurata* (ROXB.) SCHLTR. and also synonym with *Kaempferia pandurata* ROXB., belonging to the family of Zingiberaceae. It is a perennial herb distributed in some tropical countries including Indonesia, Malaysia, Myanmar, and Thailand. The local name in Indonesia is "Temu kunci" this plant is a common edible ingredient in many Asian countries. This herbal plant is also used as a traditional medicine to treat illnesses such as rheumatism, muscle pain, febrifuge, gout, gastrointestinal disorders, flatulence, carminative, stomach ache, dyspepsia, and peptic ulcer. In Indonesia, *B. rotunda* is typically used to prepare "jamu" a popular traditional tonic for women after childbirth as well as a beauty aid for teenage girls and to prevent leukorrhea. Essential oil of *B. rotunda* shows-antifungal properties against *Aspergillus niger*, *A. fumigatus* and *Mucor*7. Jantan et al.8 reported that essential oil of *B. rotunda* shows antifungal properties against *Saccharomyces cerevisiae*, *Cryptococcus neoformans*, *Candida albicans*, *Candida tropicalis*, and *Torulopsis glabrata*. The research of Taweechaisupapong et al.,9 showed the extract *B. pandurata* very effectively kills pathogenic bacteria *C. albicans* by *in vitro*. In addition, *B. rotunda* contains essential oils and also secondary metabolites such as pinostrobin, pinocembrin, cardamonin, panduratin A, and alpinetin. Yanti et al.,10 demonstrated that panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm. *B. rotunda* has similarities with *Kaempferia rotunda*, but it contains more essential oils, and shows a characteristic odour.11 Previous research showed that several chemical compounds or extracts of *K. rotunda* have antibacterial activity, anti-inflammatory, analgesic, antipyretic, anti-tumor, anti-HIV, and antioxidants.12 To improve the stability, solubility and activity of extracts and pure compounds of *B. rotunda* it is necessarily developed into a nanoparticle product.

The principles of the design of nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, conjugated drug-carrier, antibody complexes, and magnetic nanoparticles, are mainly based on the synthetic, natural, or biological components, including the use of synthetic polymers, ion metals, oils and lipids as the basic material carrier group (delivery system). However, the potential success of these particles in the clinic depends on the consideration of important parameters such as nanoparticle fabrication strategies, efficiency of use of the drug, the potential release of the drug, and most importantly, minimal toxicity of the carrier group.12 In recent years, the number of products containing nanoparticles of materials has increased because it shows the physical and chemical properties that can be beneficial in drug delivery. Nanoparticles may consist of lipids, sugar, degradable or non-degradable polymers, metals and organic or inorganic compounds13 Some cancer drugs have been made in the form of nanoparticles and have been approved by the FDA, for example, Abraxane (FDA approved in January 2005), a breast cancer drug which is made from taxol (paclitaxel) tied with albumin and has a particle size of 130 nano meters. Doxil is also an ovarian cancer drug in the form of lipid nanoparticles with polyethylene glycol (PEG). In addition there is also a cancer drug with a cholesterol-lowering drug trade name Tricor (FDA approved December 2004) in the form of colloidal nano crystal.

The synthesis of nanoparticles can use several methods such as ionic gelation method, emulsifications method, coacervation or precipitation method, and spray drying method.13 Ionic gelation method involves connecting a cross between polyelectrolyte in the presence of multivalent ion pairs. Ionic gelation is often followed by polyelectrolyte complexation with polyelectrolyte opposite. Formation the cross connecting bond will strengthen the mechanical strength of the particles formed. Polymer nanoparticles are usually made using biodegradable and hydrophilic polymers such as chitosan, gelatin and alginites.

Chitosan is a natural polysaccharide composed of β(1 → 4) glucosamine (2-amino-2-deoxy-d-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-deoxy-d-glucose). It is widely applied in the pharmaceutical industry, food and health. Chitosan has several beneficial properties; they are anti-microbial, wound healing, non-toxic, inexpensive, biocompatible, biodegradable, and water soluble. In the form of micro- or nano-particles of chitosan they have many advantages that are non-toxic, unstable during use, high surface area, and can be used as a matrix for various types of drugs and extracts plants.13 Chitosan has a capacity to increase epithelial permeation of macromolecules through the temporary opening of tight junctions of the epithelium. In addition, chitosan is known to be biocompatible and shows very low toxicity. Compared with many other natural polymers, chitosan has a positive charge and mucogelative.14 The principle of this method is the existence of ionic interactions between the amino groups of a positively charged chitosan and substances negatively charged poly-anion to form a three-dimensional network structure. Cross-linker poly-anion which is the most widely used is sodium tripolyphosphate, because it is not toxic and has a multivalent. Chitosan nanoparticles can avoid the use of organic solvents as well as prevent the damage to the active ingredient of the drugs. Making products using chitosan nanoparticles as a drug delivery can be achieved as described by Wu et al.,15

Alginite is a linear polysaccharide that is soluble in water. This compound is extracted from brown seaweed and has a linear polymer structure composed by bonding (1 → 4) α-L-guluronic and β-D-mannuronic. Alginite has been reported to be mucogelative, biodegradable, and

Pharmacognosy Journal, Vol 9, Issue 1, Jan-Feb, 2017
biocompatible and has the potential for a variety of pharmaceutical and biomedical applications such as drug delivery systems and cell encapsulation. Alginate micro- and nano-particles can be obtained easily by inducing gelation with calcium ions. It is an easy-gel which can be used to generate a pre-gel composed of aggregates which are very small particles of gel. A layer of polyelectrolyte complexes can be formed by the addition of an aqueous solution of polycationic such as Poly-L-lysine.

This work has been made to produce nanoparticles of the ethanol extract of B. rotunda loaded with chitosan (product I), alginic acid (product II), and a combination of chitosan - alginic acid (product III). To make the product I they were reacted with sodium tripolyphosphate (Na-TPP) at various compositions. The product II were prepared by reacting alginate acid and calcium ions at various compositions, while the product III were prepared by reacting chitosan and alginate acid and then calcium ion was added to the mixture. Chitosan is a polymer positively charged of amino groups, whereas alginate acid is a polymer of negatively charged of carboxyl groups.

MATERIALS AND METHODS

Apparatus and reagent

General glassware, analytical balance, evaporator Buchi Rotavapor R-114, magnetic stirrer, centrifuge, Scanning electron microscopy (SEM, Jeol T-300), particles size analysis (PSA, Horiba 550), Zeta potential (Malvern Zetasizer, UK), refrigerator, Spectronic 20 (Genesys) were used in this work.

Ethanol, aquabidest, chitosan (low molecular weight, Sigma), Sodium Tripoliphosphat (Na-TPP, Sigma-Aldrich), Acetic acid (p.a. Sigma), Alginic acid (p.a. Sigma), calcium chloride (p.a. Sigma), Rhizome of B. rotunda, 2,2 diphenyl-1-picrylhydrazyl (DPPH, Aldrich), ascobic acid (Aldrich) were used in this work without further purification.

Preparation of ethanol extract of B. rotunda

The milled dried rhizoma of B. rotunda (5 kg) was maserated by ethanol at 24 hours at three times. The filtrate is separated by filtration and evaporated using vacuum evaporator to dry to yield brown residue for about 147.6 g.

Preparation of nanoparticle product I

Nanoparticle chitosan produced by ethanol extract of B. rotunda was synthesized by ionic gelation. Ethanol extract of B. rotunda was dissolved in 35 mL ethanol and 35 mL aquaest. After homogen to the solution was added 100 mL chitosan (dissolved in acetic acid 1% v/v) at various concentrations (0.08 - 0.12% w/v), while mixing with magnetic stirrer until homogen. The resulting solution was further added with 350 mL Na-TPP (0.01-0.02% w/v in aquaest) at various concentration, and was kept for complete dissolution by magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12,000 rpm for 15 minute. The precipitate was washed with distilled water repeatedly and were dried by a freeze dryer.

Preparation of nanoparticle product II

Ethanol extract B. rotunda was dissolved in 35 mL of ethanol and 35 mL of distilled water and to the solution was added 100 mL of alginate acid (dissolved in 0.1 M NaOH) at various concentrations (0.1 - 0.5 % w/v) below the magnetic stirrer until homogenous. Extract and alginate acid solution is then added a solution of calcium chloride at various concentrations (0.01 - 0.1% w/v) slowly while stirring using a magnetic stirrer at low speed and mix stored for the complete dissolution with a magnetic stirrer at medium speed for 2 hours. The mixture was stabilized overnight at refrigerator. Nanoparticles were collected by centrifugation at 12,000 rpm for 15 minutes. The precipitate was washed with distilled water repeatedly and were dried by a freeze dryer.

Preparation of nanoparticle product III

Ethanol extract of B. rotunda was dissolved in a well stiring of 35 mL ethanol and 35 mL aquaest and then into the solution was added 50 mL alginate acid (dissolved in NaOH 0.1M) at various concentrations (0.05 - 0.1% w/v) and 50 mL chitosan (dissolved in acetic acid 1%) at various concentration (0.05 - 0.1% w/v); and the mixture was allowed to stand until homogen. The resulting solution was further added with 350 mL calcium chloride (0.015% w/v) in aquaest, and was kept for complete dissolution by magnetic stirrer for 2 hours. The mixture was stabilized overnight at refrigerator. The nanoparticles were collected by centrifugation at 12,000 rpm for 15 minute. The precipitate was washed with distilled water repeatedly and then freshdried for 24 hours.

All resulting nanoparticles were dried and stored at refrigerator. Yield of the nanoparticles were calculated by the formula:

\[
\text{% yield} = \frac{\text{weight of nanoparticles obtained}}{\text{weight of sample fraction + weight of chitosan/alginate acid used for synthesis}} \times 100\%
\]

The characterization of this product was analyzed in term of particle size, zeta potential, and SEM (Scanning Electron Microscopy).

Biological activity as Antioxidant

Antioxidant activity was analyzed by DPPH (2,2-diphenyl-1-picrylhydrazyl) method. This method used DPPH as the source of free radical. About 5 mL of the nanoparticle was mixed with 5 mL methanolic solution of DPPH (0.12 mM) and kept in dark at room temperature for 30 minutes. The DPPH scavenging activity was determined using spectronic 20 (Genesys) at 516 nm against DPPH solution as control. The samples were tested in triplicates. The antioxidant activity was calculated as percentage

Table 4: The Inhibition activity (IC\textsubscript{50}) of nanoparticle product produced by ethanol extract from of B. rotunda and positive control as antioxidant

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>IC\textsubscript{50}</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6. Chitosan nanoparticle (98.1%)</td>
<td>153.27</td>
<td>Less active</td>
</tr>
<tr>
<td>B9. Alginic acid nanoparticle (90.2%)</td>
<td>99.14</td>
<td>active</td>
</tr>
<tr>
<td>B11. Alginic acid nanoparticle (95.2%)</td>
<td>139.0</td>
<td>Less active</td>
</tr>
<tr>
<td>C3. Chitosan-alginic acid nanoparticle (29.7%)</td>
<td>27.05</td>
<td>active</td>
</tr>
<tr>
<td>Ethanol extract from B. rotunda</td>
<td>92.2</td>
<td>active</td>
</tr>
<tr>
<td>Positive control (Ascobic acid)</td>
<td>3.77</td>
<td>Very active</td>
</tr>
</tbody>
</table>

IC\textsubscript{50} > 100 µg/mL less active; 100-10 µg/mL active; < 10 µg/mL very active
of DPPH that was decreased in comparison with the control, and the inhibition activity could be calculated to determine \(IC_{50} \).

Statistical analysis

The data of all experiments were represented as Mean ± SD and were analyzed using Microsoft Excel (Redmond, WA) software.

RESULTS AND DISCUSSION

The synthesised nanoparticles of ethanol extract of *B. rotunda* was conducted with ionic gelation method using chitosan (Product I), alginic acid (Product II), and a combination of chitosan-alginic acid (Product III). This method are carried out at ambient temperature, and thus the preparation is relatively simple. Data of Table 1, 2 and 3 show particle size, zeta potential, yield, and physical properties of this products. In this work, the particle size was analyzed using PSA (Particle Size Analyser), it is the dynamic light scattering (DLS) system measurement. The instrument is capable of measuring particle size in the range of 1 nm to 6 µm at concentration up to 40% w/v.

The stability of nanoparticles was analysed by zeta potential, that is to determine the surface charge of nanoparticles in solution or colloid.

Nanoparticles have a surface charge that attracts a thin layer of ions of opposite charge to the nanoparticle surface. Two layers move with nanoparticles dispersed throughout the solution. Electrical potential on the second boundary layer called the zeta potential of particles and has a typical value between +100 mV to -100 mV. Zeta potential of nanoparticles with a value greater than +25 mV or less than -25 mV has a high degree of stability. Dispersions with a low zeta potential value will eventually aggregate due to Van Der Waal inter-particle attractions. A colloidal solution containing a high percentage amount of nanoparticles would show the high value of the zeta potential, so that the solution will be difficult to form a precipitate. In this work nanoparticles produced by ethanol extract of *B. rotunda* loaded with chitosan (product I) show zeta potential positive charged, but alginic acid (product II) show zeta potential negatively charged. Product III contain components nanoparticles 29.7%, so the zeta potential not measured. Products with nanoparticles of less than 70% usually indicates a low zeta potential.

In the synthesis, the formation of nanoparticles of product I are influenced by the concentration ratio of the material forming the matrix. If the ratio is too low the product tend to form microparticles. Nanoparticles of product I are obtained at a concentration ratio of chitosan / Na-
TPP: 1, with the percentage amount of nanoparticles 98.1%, and the size range of the nanoparticles were to be 389 to 877 nm, with a zeta potential of +41.87 mV. Previous research, the nanoparticles of chitosan produced by chloroform fraction of K. rotunda were obtained at concentration ratio of chitosan/Na-TPP 10:1 as much as 100%, and the size range of the nanoparticles were to be 172 to 877 nm, with a zeta potential of +28.06 to +38.03 mV. The difference is due to the composition and type of components in each of the different extracts, thus affecting the character of the nanoparticles produced. Similarly, other researchers have adjusted to get a chitosan/Na-TPP ratio of 6:1, and the nanoparticles thus were obtained in the range of 300–400 nm with a positive surface charge ranging from +54 to +25 mV. However, the nanoparticle product is highly dependent on the deacetylation of chitosan used, because it involves gelation of the protonated amino group of chitosan. The nanoparticles of product II was synthesized using calcium ion as a cross junction to form pore size of the gel. The concentration of Ca²⁺ has a significant effect on the stability and pore size of the gel. The nanoparticles of Product II can be optimally synthesized at a concentration of algic acid/Ca²⁺ ratio of 5:1, with the percentage amount of 90.2%, the size range of 197 to 877 nm, and with a zeta potential of -82.1 mV. When the concentration of algic acid/Ca²⁺ ratio was 2.5:1, it resulted in the percentage amount of 95.2%, but the size range from 339 to 877 nm, with a zeta potential of -72.1 mV, and the mean yield was relatively low. When the concentration of calcium ion is high the gel microparticles can be optimally synthesized at a concentration of chitosan/Na-TPP ratio 10:1 as much as 100%, and the size range from 197 to 877 nm, with a zeta potential of -82.1 mV.

In this work the synthesis of product III resulted in more micro-sized gel. Furthermore the combination-nanoparticles of alginic acid/ Ca⁹⁹⁺, and ratio of 6.7 : 2 : 1, only resulted in the percentage of about 29.7% , and the size range of 226 to 877 nm. The nanoparticles of microparticles produced by ethanol extract of B. rotunda were identified using optical microscope by scanning electron microscopy (SEM). For SEM analysis, the working distance was 10 mm, beam energy was 20.0 kV, spot size was 5.0, and magnification was 5000. The nanoparticles were loaded on a double sided carbon tape and put on studs before being examined by SEM. Figure 1 shows the morphology of nanoparticles product I, II, and III, the surfaces are spherical and smooth. The DPPH assay was used to study the free-radical scavenging capacity of these products. The results is shown in Table 4. The antioxidant activity of all nanoparticles products showed IC₅₀ of 153.27; 139.0; and 27.05 μg/mL respectively. The antioxidant activity of ethanol extract of B. rotunda shows IC₅₀ of 92.75 μg/mL. Thereby, the nanoparticles of product I and II have antioxidant activity weaker than the starting material ethanol extract of B. rotunda, while the nanoparticles of product III shows higher activity than the starting material ethanol extract of B. rotunda.

CONFLICT OF INTEREST

We declare that we have no conflict of interest

ACKNOWLEDGMENT

We would like to thank Minister Research and Technology Directorate of Higher Education, Indonesia for the research funding an excellent re-

search universities grant (RUPT-IDB, Number: 155/SP2H/LT/DRPM/III/2016, 10 March 2016. We also express our gratitude to Prof.K.H. Sugiyarto from Dept. Chem.ed. Yogyakarta State University who has critical review on this manuscript.

ABBREVIATIONS USED??

REFERENCES

Dear Author,

Your article will be published by February. And the processing fee has been waived for you this time.

Regards

[Cutipan teks disembunyikan]
- sriatun <sriatun@uny.ac.id>
Kepada: Sri handayani <handayani@uny.ac.id>

28 Maret 2019 15.59

Dear editor

Would you like inform me, when my paper published?

if there is the cost of publication, what is the procedure of payment?

Thankyou, Sri Atun

[Kutipan teks disembunyikan]
Synthesis of Nanoparticles Produced by Ethanol Extract of *Boesenbergia rotunda* Rhizome Loaded with Chitosan and Algic Acid and its Biological Activity test

Sri Atun*, Sri Handayani

ABSTRACT

Introduction: *B. rotunda* used as a traditional medicine to treat illnesses such as rheumatism, muscle pain, fever, gout, gastrointestinal disorders, flatulence, carminative, stomach ache, dyspepsia, and peptic ulcer. To enhance the stability, solubility and activity of the extract *B. rotunda*, should be developed into a product nanoparticles. **Objective:** This work reports the synthesis of nanoparticles produced by ethanol extract of *Boesenbergia rotunda* rhizome loaded with chitosan and algic acid, and its biological activity test as antioxidant. **Method:** The synthesis of nanoparticles used an ionic gelation. Activity of the nanoparticle products as antioxidant was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. **Results:** This work showed that nanoparticles chitosan produced by ethanol extract *B. rotunda* can be synthesized at a concentration (% w/v) of chitosan/Na-TPP (sodium tripolyphosphate) and ratio of 8: 1, the size range of the nanoparticles were 389 to 877 nm, with a zeta potential of + 4187 mV, and percentage nanoparticle 98.1%. The corresponding nanoparticles algic acid can be synthesized at a concentration (% w/v) of algic acid/ Ca2+ and ratio of 5: 1, the size range of the nanoparticles were 197 to 877 nm, with a zeta potential of -82.1 mV, and percentage nanoparticle 90.2%. Furthermore, nanoparticles result of the combination of algic acid –chitosan can be synthesized at a concentration (% w/v) algic acid/chitosan/Na-TPP and ratio of 6.2: 2: 1, the size range of the nanoparticle were 226 to 877 nm, and percentage nanoparticle 29.7%. The morphology of each nanoparticle products was spherical and a smooth surface. The chitosan-algic acid nanoparticles show higher activity than the starting material ethanol extract of *B. rotunda*.

Key words: Nanoparticles chitosan, algic acid, chitosan-algic acid combination, *B. rotunda*, antioxidant.

INTRODUCTION

Dental caries and oral disease are often found in Indonesia. Both of them can affect the health of all sections of society, including vulnerable to gum disease. Dental caries is a multifactorial disease, caused by factors of the surface of the tooth itself, the substrate, microorganisms and time. The disease is also strongly associated as a cause of coronary heart disease, kidney failure, stomach cancer, colon cancer, and oral cancer. The negative impact is easily seen as a plaque attached to the tooth surface, which if not addressed could cause damage to the email that cause caries or cavities. Some antibiotics have been found to prevent and reduce the formation of plaque, but they can cause side effects when used continuously, namely the emergence of a strain of bacteria resistant to antibiotics and cannot be absorbed by tissues. The use of antibiotics often results in resistant, while the use of antiseptics, such as chlorhexidine can prevent even can remove plaque that has been formed, but the side effects is the discoloration of the teeth and tongue and taste disorders after use. Therefore, it is necessary to find new antibacterial natural ingredients that have no side effects.

Nanotechnology is the study of particles in the size range of 1-1000 nm. The nano scale will bring up the physical, chemical, and biological characteristics. Nanotechnology has been applied in various fields such as electronics, energy, space, medicine, food, chemical sensors and molecular manufacturing. Today the use of nanotechnology has been developed in the medical field that focuses on the application of technology in the rapid diagnosis, drug delivery, imaging, and therapy. Nanoparticle based drug delivery systems have made an interestingly remarkable difference in the studies using chemotherapy agent, for the physical, chemical and biological aspects. Some products of nanoparticles have been developed and used clinically. The use of nanotechnology in cancer drug discovery indicates that it can reduce damage to normal cells, power absorption and distribution; it can be set so that cancer drugs can work more optimally.

Boesenbergia rotunda (L.) MANSEF. KULTURPFL. is synonym with *Boesenbergia pandurata* (ROXB.) SCHLTR. and also synonym with *Kaempferia pandurata* ROXB., belonging to the family of Zingiberacea. It is a perennial herb distributed in some tropical countries including Indonesia, Malaysia, Myanmar, and Thailand. The local name in Indonesia is “Temu kunci” this plant is a common edible ingredient in many Asian countries. This herbal plant is also used as a traditional medicine to treat illnesses such as dental caries and oral disease.
The synthesis of nanoparticles can use several methods such as ionic gelation method, emulsifications method, coacervation or precipitation method, and spray drying method. The synthesis of nanoparticles can use several methods such as ionic gelation, emulsifications, coacervation or precipitation method, and spray drying method. Ethanol extract of B. rotunda contains essential oils and also secondary metabolites such as pinostrobin, pinocembrin, cardamomin, panduratin A, and alpinetin. Yanti et al. demonstrated that panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm. B. rotunda has similarities with K. pandurata, but it contains more essential oils, and shows a characteristic odor. Previous research showed that several chemical compounds or extracts of K. rotunda has antibacterial activity, anti-inflammatory, analgesic, antipyretic, anti-tumor, anti-HIV, and antioxidants. To improve the stability, solubility and activity of extracts and pure compounds of B. rotunda it is necessarily developed into a nanoparticle product.

The principles of the design of nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, conjugated drug-carrier, antibody complexes, and magnetic nanoparticles, are mainly based on the synthetic, natural, or biological components, including the use of synthetic polymers, ion metals, oils and lipids as the based material carrier group (delivery system). However, the potential success of these particles in the clinic depends on the consideration of important parameters such as nanoparticle fabrication strategies, efficiency of use of the drug, the potential release of the drug, and most importantly, minimal toxicity of the carrier group. In recent years, the number of products containing nanoparticles of materials has increased because it shows the physical and chemical properties that can be beneficial in drug delivery. Nanoparticles may consist of lipids, sugar, degradable or non-degradable polymers, metals and organic or inorganic compounds. Some cancer drugs have been made in the form of nanoparticles and have been approved by the FDA, for example, Abraxane (FDA approved in January 2005), a breast cancer drug which is made from taxol (paclitaxel) tied with albumin and has a particle size of 130 nano meters. Doxil is also an ovarian cancer drug in the form of lipid nanoparticles with polyethylene glycol (PEG). In addition there is also a cancer drug with a cholesterol-lowering drug trade name Tricor (FDA approved December 2004) in the form of colloidal nano crystal.

The synthesis of nanoparticles can use several methods such as ionic gelation method, emulsifications method, coacervation or precipitation method, and spray drying method. Ionic gelation method involves connecting a cross between polyelectrolyte in the presence of multivalent ion pairs. Ionic gelation is often followed by polyelectrolyte complexation with polyelectrolyte opposite. Formation the cross connecting bond will strengthen the mechanical strength of the particles formed. Polymer nanoparticles are usually made using biodegradable and hydrophilic polymers such as chitosan, gelatin and alginates.

Chitosan is a natural polysaccharide composed of \(\beta (1 \rightarrow 4) \) glucosamine (2-amino-2-deoxy-d-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-deoxy-d-glucose). It is widely applied in the pharmaceutical industry, food and health. Chitosan has several beneficial properties; they are anti-microbial, wound healing, non-toxic, inexpensive, biocompatible, biodegradable, and water soluble. In the form of micro- or nanoparticles of chitosan they have many advantages that are non-toxic, unstable during use, high surface area, and can be used as a matrix for various types of drugs and extracts plants. Chitosan has a capacity to increase epithelial permeation of macromolecules through the temporary opening of tight junctions of the epithelium. In addition, chitosan is known to be biocompatible and shows very low toxicity. Compared with many other natural polymers, chitosan has a positive charge and mucosal adhesive. The principle of this method is the existence of ionic interactions between the amino groups of a positively charged chitosan and substances negatively charged poly-anion to form a three-dimensional network structure. Cross-linker poly-anion which is the most widely used is sodium tripolyphosphate, because it is not toxic and has a multivalent. Chitosan nanoparticles can avoid the use of organic solvents as well as prevent the damage to the active ingredient of the drugs. Making products using chitosan nanoparticles as a drug delivery can be achieved as described by Wu et al.

Alginate is a linear polysaccharide that is soluble in water. This compound is extracted from brown seaweed and has a linear polymer structure composed by bonding (1-4) \(\alpha \)-L-guluronic and \(\beta \)-D-mannuronic. Alginate has been reported to be mucoadhesive, biodegradable, and biocompatible and has the potential for a variety of pharmaceutical and biomedical applications such as drug delivery systems and cell encapsulation. Alginate micro- and nano-particles can be obtained easily by inducing gelation with calcium ions. It is an easy-gel which can be used to generate a pre-gel composed of aggregates which are very small particles of gel. A layer of polyelectrolyte complexes can be formed by the addition of an aqueous solution of polycationic such as Poly-L-lysine.

This work has been made to produce nanoparticles of the ethanol extract of B. rotunda loaded with chitosan (product I), alginic acid (product II), and a combination of chitosan - alginic acid (product III). To make the product I they were reacted with sodium tripolyphosphate (Na-TPP) at various compositions. The product II were prepared by reacting algic acid and calcium ions at various compositions, while the product III were prepared by reacting chitosan and algic acid and then calcium ion was added to the mixture. Chitosan is a polymer positively charged of amino groups, whereas algic acid is a polymer of negatively charged of carboxyl groups.

MATERIALS AND METHODS

Apparatus and reagent

General glassware, analytical balance, evaporator Buchi Rotavapor R-114, magnetic stirrer, centrifuge, Scanning electron microscopy (SEM, Jeol T-300), particles size analysis (PSA, Horiba 550), Zeta potential (Malvern Zetasizer, UK), refrigerator, Spectronic 20 (Genesys) were used in this work.

Ethanol, aquabidest, chitosan (low molecular weight, Sigma), Sodium Tripoliphosphate (Na-TPP, Sigma-Aldrich), Acetic acid (p.a. Sigma), Alginic acid (p.a. Sigma), calcium chloride (p.a. Sigma), Rhizome of B. rotunda, 2,2 diphenyl-1-picrylhydrazyl (DPPH, Aldrich), ascorbic acid (Aldrich) were used in this work without further purification.

Preparation of ethanol extract of B. rotunda

The milled dried rhizoma of B. rotunda (5 kg) was maserated by ethanol at 24 hours at three times. The filtrate is separated by filtration, and evaporated using vacuum evaporator to dry to yield brown residue for about 147.6 g.

Preparation of nanoparticle product I

Nanoparticle chitosan produced by ethanol extract of B. rotunda was synthesized by ion gelation. Ethanol extract of B. rotunda was dissolved in 35 mL ethanol and 35 mL aquadest. After homogen to the so-
RESULTS AND DISCUSSION

The synthesised nanoparticles of ethanol extract of *B. rotunda* was conducted with ionic gelation method using chitosan (Product I), alginic acid (Product II), and a combination of chitosan-alginic acid (Product III). This method is carried out at ambient temperature, and thus the preparation is relatively simple. Data of Table 1, 2 and 3 show particle size, zeta potential, yield, and physical properties of this products. In this work, the particle size was analyzed using PSA (Particle Size Analyser), it is the dynamic light scattering (DLS) system measurement. The instrument is capable of measuring particle size in the range of 1 nm to 6 μm at concentration up to 40% w/v.

The stability of nanoparticles was analysed by zeta potential, that is to determine the surface charge of nanoparticles in solution or colloid. Nanoparticles have a surface charge that attracts a thin layer of ions of opposite charge to the nanoparticle surface. Two layers move with nanoparticles dispersed throughout the solution. Electrical potential on the second boundary layer called the zeta potential of particles and has a typical value between +100 mV to -100 mV. Zeta potential of nanoparticles with a value greater than +25 mV or less than -25 mV has a high degree of stability. Dispersions with a low zeta potential value will eventually aggregate due to Van Der Waal inter-particle attractions.\(^1\) A colloidal solution containing a high percentage amount of nanoparticles would show the high value of the zeta potential, so that the solution will be difficult to form a precipitate. In this work nanoparticles produced by ethanol extract of *B. rotunda* loaded with chitosan (product I) show zeta potential positive charged, but alginic acid (product II) show zeta potential negatively charged. Product III contain components nanoparticles 29.7%, so the zeta potential not measured. Products with nanoparticles of less than 70% usually indicates a low zeta potential.

In the synthesis, the formation of nanoparticles of product I are influenced by the concentration ratio of the material forming the matrix. If the ratio is too low the product tend to form microparticles. Nanoparticles of product I are obtained at a concentration ratio of chitosan / Na-TPP 8: 1, with the percentage amount of nanoparticles 98.1%, and the size ranges of the nanoparticles were to be 389 to 877 nm, with a zeta potential of +41.87 mV. Previous research,\(^1\) the nanoparticle of chitosan produced by chloroform fraction of *K. rotunda* were obtained at concentration ratio of chitosan / Na-TPP 10: 1 as much as 100%, and the size range of the nanoparticles were to be 172 to 877 nm, with a zeta potential of +28.06 to +38.03 mV. The difference is due to the composition and type of components in each of the different extracts, thus affecting the character of the nanoparticles produced. Similarly, other researcher has adjusted to get a chitosan/Na-TPP ratio of 6:1, and the nanoparticles thus were obtained to be in the range of 300–400 nm with a positive surface charge ranging from +54 to +25 mV.\(^1\) However, the nanoparticle product is highly dependent on the deacetylation of chitosan used, because it involves gelation of the protonated amino group of chitosan.

The nanoparticles of product II was synthesized using calcium ion as a cross junction to form pore size of the gel. The concentration of Ca\(^{2+}\) has a significant effect on the stability and pore size of the gel. The nanoparticles of Product II can be optimally synthesized at a concentration of alginic acid/ Ca\(^{2+}\) ratio of 5: 1, with the percentage amount of 90.2 %, the range size of 197 to 877 nm, and with a zeta potential of -82.1 mV. When the concentration of alginic acid/ Ca\(^{2+}\) ratio was 2.5: 1, it resulted in the percentage amount of 95.2 %, but the size ranged from 339 to 877 nm, with a zeta potential of -72.1 mV, and the mean yield was relatively low. When the concentration of calcium ion is high the gel microparticles were formed.

In this work the synthesis of product III resulted in more micro-sized gel. Unfortunately, the optimal combination to produce nanoparticles of...
The morphology of nanoparticles produced by ethanol extract of *B. rotunda* were identified using optical microscope by scanning electron microscopy (SEM). For SEM analysis, the working distance was 10 mm, beam energy was 20.0 kV, spot size was 5.0, and magnification was 5000. The nanoparticles were loaded on a double sided carbon tape and put

Table 1: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded chitosan (Product I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
<th>Ext (g)</th>
<th>Chitosan (% w/v)</th>
<th>NaTPP (% w/v)</th>
<th>MeanYield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td></td>
<td>334 ± 5.7; yellow brown</td>
<td>1.3</td>
<td>877</td>
<td>98.7</td>
<td>1005-1510</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0.2</td>
<td>0.02</td>
<td></td>
<td>444 ± 4.8; yellow brown</td>
<td>68.7</td>
<td>510-877</td>
<td>31.3</td>
<td>1005-1510</td>
<td>+26.83</td>
</tr>
<tr>
<td>A3</td>
<td>1</td>
<td>0.3</td>
<td>0.02</td>
<td></td>
<td>395 ± 3.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-1729</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>0.4</td>
<td>0.02</td>
<td></td>
<td>523 ± 4.6; yellow brown</td>
<td>1</td>
<td>766-877</td>
<td>99</td>
<td>1005-2269</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
<td>440 ± 10.1; yellow brown</td>
<td>75.8</td>
<td>389-877</td>
<td>24.2</td>
<td>1005-1151</td>
<td>+14.40</td>
</tr>
<tr>
<td>A6</td>
<td>1</td>
<td>0.08</td>
<td>0.01</td>
<td></td>
<td>501 ± 12.8; yellow brown</td>
<td>98.1</td>
<td>389-877</td>
<td>1.9</td>
<td>1005</td>
<td>+41.87</td>
</tr>
<tr>
<td>A7</td>
<td>1</td>
<td>0.09</td>
<td>0.01</td>
<td></td>
<td>380 ± 20.2; yellow brown</td>
<td>70.1</td>
<td>296-877</td>
<td>29.9</td>
<td>1005-1729</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>1</td>
<td>0.11</td>
<td>0.01</td>
<td></td>
<td>478 ± 8.9; yellow brown</td>
<td>19.0</td>
<td>766-877</td>
<td>81.0</td>
<td>1005-1151</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>1</td>
<td>0.12</td>
<td>0.01</td>
<td></td>
<td>413 ± 5.8; yellow brown</td>
<td>53.7</td>
<td>339-877</td>
<td>46.3</td>
<td>1005-1510</td>
<td></td>
</tr>
</tbody>
</table>

*if % nanoparticle <70%, zeta potential very low and not be measured

more than 80% was not successful. This is due to the interaction of the two polymers which have an opposite charge and this tends to produce large porous gel. Furthermore the combination-nanoparticles of alginic acid /chitosan /Ca^{2+}, and ratio of 6.7 : 2: 1, only resulted in the percentage of about 29.7 %, and the size range of 226 to 877 nm.

Table 2: Synthesis nanoparticle product produced by ethanol extract of *B. rotunda* loaded alginic acid and Ca^{2+} (Product II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Ca^{2+} (% w/v)</th>
<th>MeanYield (mg)</th>
<th>% Nano Particle</th>
<th>Size (nm)</th>
<th>% Micro Particle</th>
<th>Size (µm)</th>
<th>Zeta Potensial (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>569±1.3; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>576±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1005-3409</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>894±0.9; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>3905-5122</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>597±2.2; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1318-6000</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>637±2.5; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1151-1318</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.1</td>
<td>167±3.8; yellow brown</td>
<td>80.8</td>
<td>226-877</td>
<td>19.2</td>
<td>1005-1318</td>
<td>-89.5</td>
</tr>
<tr>
<td>B8</td>
<td>1</td>
<td>0.1</td>
<td>0.015</td>
<td>0.1</td>
<td>227±4.5; yellow brown</td>
<td>83.3</td>
<td>259-877</td>
<td>16.7</td>
<td>1005-1981</td>
<td>-84.7</td>
</tr>
<tr>
<td>B9</td>
<td>1</td>
<td>0.1</td>
<td>0.02</td>
<td>0.1</td>
<td>246±3.2; yellow brown</td>
<td>90.2</td>
<td>197-877</td>
<td>9.8</td>
<td>1005-1151</td>
<td>-82.1</td>
</tr>
<tr>
<td>B10</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.1</td>
<td>228±2.3; yellow brown</td>
<td>65.5</td>
<td>259-877</td>
<td>34.5</td>
<td>1005-1510</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>1</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
<td>182±2.3; yellow brown</td>
<td>95.2</td>
<td>339-877</td>
<td>4.8</td>
<td>2269-3905</td>
<td>-72.1</td>
</tr>
</tbody>
</table>

*if % nanoparticle <70%, zeta potential very low and not be measured Ext = ethanol extract of *B. rotunda*; Alg = alginic acid
on studs before being examined by SEM. Figure 1 shows the morphology of nanoparticles product I, II, and III, the surfaces are spherical and smooth.

The DPPH assay was used to study the free-radical scavenging capacity of these products. The results are shown in Table 4. The antioxidant activity of all nanoparticles products showed \(IC_{50}\) of 153.27; 139.0; and 27.05 \(\mu g/mL\) respectively. The antioxidant activity of ethanol extract of \textit{B. rotunda} shows \(IC_{50}\) of 92.75 \(\mu g/mL\). Thereby, the nanoparticles of product I and II have antioxidant activity weaker than the starting material ethanol extract of \textit{B. rotunda}, while the nanoparticles of product III shows higher activity than the starting material ethanol extract of \textit{B. rotunda}.

Table 3: Synthesis nanoparticle product produced by ethanol extract of \textit{B. rotunda} loaded Chitosan-alginic acid and \(Ca^{2+}\) (Product III)

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
<th>Ext (g)</th>
<th>Alg (% w/v)</th>
<th>Chi (% w/v)</th>
<th>Ca(^{2+}) (% w/v)</th>
<th>MeanYield (mg)</th>
<th>% Nano Particle</th>
<th>% Micro Particle</th>
<th>Size (nm)</th>
<th>Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.015</td>
<td>0.015</td>
<td>592±2.2; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>2269-3409</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.03</td>
<td>0.015</td>
<td>610±3.5; yellow brown</td>
<td>1.4</td>
<td>877</td>
<td>98.6</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>0.015</td>
<td>0.015</td>
<td>427±3.4; yellow brown</td>
<td>29.7</td>
<td>226-877</td>
<td>70.3</td>
<td>1005-1729</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>0.01</td>
<td>0.1</td>
<td>0.015</td>
<td>0.015</td>
<td>384±4.5; yellow brown</td>
<td>3.6</td>
<td>877</td>
<td>96.4</td>
<td>1005-6000</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.015</td>
<td>0.015</td>
<td>504±1.8; yellow brown</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1510-2269</td>
</tr>
</tbody>
</table>

Ext = ethanol extract of \textit{B. rotunda}; Alg = alginic acid; Chi = Chitosan *if % nanoparticle <70%, zeta potential very low and not be measured

Table 4: The Inhibition activity \(IC_{50}\) of nanoparticle product produced by ethanol extract from of \textit{B. rotunda} and positive control as antioxidant

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>(IC_{50}) (µg/mL)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6. Chitosan nanoparticle (98.1%)</td>
<td>153.27</td>
<td>Less active</td>
</tr>
<tr>
<td>B9. Alginic acid nanoparticle (90.2%)</td>
<td>99.14</td>
<td>active</td>
</tr>
<tr>
<td>B11. Alginic acid nanoparticle (95.2%)</td>
<td>139.0</td>
<td>Less active</td>
</tr>
<tr>
<td>C3. Chitosan-alginic acid nanoparticle (29.7%)</td>
<td>27.05</td>
<td>active</td>
</tr>
<tr>
<td>Ethanol extract from \textit{B. rotunda}</td>
<td>92.2</td>
<td>active</td>
</tr>
<tr>
<td>Positive control (Asobic acid)</td>
<td>3.77</td>
<td>Very active</td>
</tr>
</tbody>
</table>

\(IC_{50}\) > 100 µg/mL less active; 100-10 µg/mL active; < 10 µg/mL very active

Figure 1: SEM of the nanoparticles (A) chitosan (product I); (B) Alginic acid (product II); and (C) Combination of chitosan-alginic acid (product III) produced by ethanol extract of \textit{B. rotunda}.
CONFLICT OF INTEREST
We declare that we have no conflict of interest

ACKNOWLEDGEMENT
We would like to thank Minister Research and Technology Directorate of Higher Education, Indonesia for the research funding an excellent research universities grant (RUPT-IDB, Number: 155/SP2H/IT/DRPM/III/2016, 10 Mart 2016. We also express our gratitude to Prof. K.H. Sugiyarto from Dept. Chem.ed. Yogyakarta State University who has critical review on this manuscript.

REFERENCES

ABOUT AUTHORS
Prof. Dr. Sri Atun: Lecturer in the Department of Chemistry Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, in the field of natural products. Experience research has been done includes the exploration and its biological activities test from plants, especially from the family Dipterocarpaceae, Gnetaceae, and Zingibearceae.

Dr. Sri Handayani: Lecturer in the Department of Chemistry Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, in the field of synthesis organic.