DEVELOPING INTEGRATED SCIENCE, CHARACTER, AND LITERACY-BASED SCIENCE PACKAGE AS SCIENCE LEARNING MODEL

Insh Wilujeng, Zuhdan Kun P., Senam

Natural Science Education, PPs., UNY
inshumy@yahoo.co.id

Abstract

This study aims to investigate the appropriateness of the integration science, character, and literacy-based science learning package as learning science model in junior high school, the improvement students’ science attitudes, problem solving ability, collaboration, environmental awareness, attitudes, and scientific literacy after they attend learning activities implementing science learning package. This was a research and development study employing the development model by Borg & Gall (1983). The research procedure consisted of: (1) preliminary study, (2) planning, (3) product draft design, (4) product validation, (5) revision and tryouts, (6) final product study, and (7) dissemination. The result of the study is a product in the form of an attitude-based science learning package for the Acid Rain, Global Warming, and Environmental Pollution topic for Grade VII of the junior high school with appropriateness assessment was "A" and a mean score of > 3.1. The scientific attitudes, problem solving ability, collaboration, environmental awareness, attitudes, and scientific literacy of students of junior high school after they learned through science learning package improved. The problem’s implementing science learning package is the science teacher and student’s not usually with integrated science learning and used integrated topic.

Key words: science package, problem solving ability, collaboration, environmental awareness attitude, students’ scientific attitudes, science literacy, character

INTRODUCTION

The problem of education is the quality of science teaching in Indonesia is still low when compared with other developing countries, particularly the ASEAN countries. Data results of PISA (Program for International Student Assessment) in 2009 put learners Indonesia on the tenth lower, raise questions about the quality of teachers within a period of the ten years lower, raise questions about quality of the teachers teach. Indicated that low literacy problem solving ability possessed learners low as problem solving and scientific literacy related to one another. The National Science Teachers Association (NSTA) (Tobarudin, et al, 2011:1) explains that scientific literacy is a person’s ability to use scientific concepts, have the science process skills to assess and make decisions everyday that relate to people, the environment, and understand interaction between science, technology, and society as well as social and economic developments.

Scientific literacy is essential for learners as government effort to prepare Indonesian citizens who are able to compete against AFTA (Asian Free Trade Area). In addition, the ability of solving an indication of mastery of literacy is high on someone. Abudi, et al. (2011: 307) defines the problem-solving is a smart way and part of the problem solving process in which there find and classify the problem. Someone who has a problem solving abilities are able to use knowledge of science and science process that is used to analyze a problem so as found a
solution. Therefore, scientific literacy is a skill that must be provided by the teacher to the learners. The second problem, the crime rate is increasing so that the students do indicate the character of learners experiencing slump. Crime committed learners in major cities in the period 2013-2014 more than ten cases of murder and other crimes cases.

The government’s efforts to get a solution to the problem of education, especially science education is to make change to curriculum. As presented Noah (2013) one of the reason the government in Indonesia to revising the existing curriculum with the curriculum in 2013 based low literacy learners. The existence of curriculum change are expected to improve the quality of teacher teaching to produce an effective and efficient learning and to improve scientific literacy learners Indonesia. Additionally, curriculum 2013 recommends the implementation of character education through all subjects, including science teaching. The role of school, families, and society needs to instill character education learners (Zuchdi, et al, 2011). Implementation of character education through subjects that create a character that consists of the values of kindness (noble values) are formed in a self-learners so that the role of school make a real contribution. Therefore, the role of teachers not only teach science course but instill character through learning activities and learning activities outside.

Implementation of character education through teaching science in SMP is supported by the nature of science are close relation to integrated character and scientific literacy that can be achieved learners. Science should be seen as a way of thinking and investigation in search of understanding natural phenomena, as a way of natural phenomena, and as a body of knowledge that is generated from the inquiry. Science deals with an attempt to understand the various natural phenomena systematically. Science has the dimensions of scientific attitude, the scientific process, and scientific products, in the form of knowledge. Therefore, the purpose of learning science process skills training, foster scientific attitude, and creativity as well as the application of science in everyday life (Carlin & Yager in Kemdikbud, 2011: 1). Case (Harell, 2010: 147) explains that the integration of science includes the integration of content, process, and skills, integration of schools and learners, and the overall integration (all formal learning and practice activities informal, ongoing, methods, ruler, and school influences on learning process. NSTA (Binggeli, 2011: 4) recommends that science study should be able to provide much content to develop 21st century skills such as critical thinking, problem solving, and scientific literacy, especially when discussing the nature of science and promoting the use of science. These skills not only contribute to the development of well-prepared workforce future but also provide life skills to individuals who help them succeed. Through the science of quality education, we can support and advance the skills 21st century that are relevant, while increasing application of knowledge through the planting of 21st century skills.

Dimension scientific attitude close relation to the values of character. Bundu (2006:39) define a scientific attitude as attitudes toward objects and events in the surrounding environment that would affect a person’s willingness to participate in a particular activity and the way a person responds to other people, objects, or events. Martin, et al. (2005: 13) that the emotional aspects of the realm of scientific attitude that needs to be developed, namely (a) curiosity, (b) diligently, (c) carefully, (d) open-minded, and (e) in cooperation with others. Aspects of the scientific attitude of intellectual realm include: (a) the desire to obtain reliable information sources, (b) the desire to present alternative ideas that can be proven, (c) the general concluded from the data/evidence is limited, (d) receive opinions, explanations or different ideas, (e) willingness to not make any conclusions until all the evidence/information is obtained and tested, (f) refuse to believe the opinions that are not based on evidence, (g) openness to change his mind changes are supported by evidence that can be trusted. Education of character in the educational unit has identified 18 values derived from religion, Pancasila culture, and national education goals, namely: (1) religious, (2) honest, (3) tolerance, (4) discipline, (5) hard work, (6) creative, (7) self, (8) democratic, (9) curiosity, (10) the national spirit, (11) love of the homeland, (12) the achievement,
(13) friends/communicative, (14) love peace, (15) like to read, (16) care about the environment, (17) social care, (18) responsibility (MONE, 2011: 8). Through scientific attitude in science teaching are expected to shape the character of which consists of the virtues of learners.

Learning science that familiarize learners to foster scientific attitude is expected to improve the achievement of scientific literacy learners. In addition, collaboration becomes a target of achieving Curriculum 2013 that achieved by learners. Collaboration is a person’s ability to cooperate with other friends to complete certain task in group. Based on the theory, it is possible integration of characters in science teaching can be implemented.

Comprehensive approach used in developing the values in character education through subjects, including science. Zuchdi, et al. (2011: 6) said that a comprehensive approach includes four aspects. First, the contents of the value of education covers all issues related to the choice of the values of a personal nature to questions about ethics generally. Second, the value of education carried out by the method of planting value, giving the example, and preparing young people to become independent with moral decision-making in a responsible manner as well as other life skills. Third, the value of education should take place in the overall educational process in the classroom, extracurricular, guidance, and counseling, the award ceremony, and all aspects of life. Forth, the value of education should take place through the life of society.

Research conducted Listiyawati (2012: 68) regarding science learning tools that have been developed can enhance the abilities of learners which consists of the ability of cooperation within the group, the confidence of learners, critical thinking skills, intellectual curiosity, develop appropriate response honestly, learn to balance the benefits of relying on others with responsibility for their own part, make decisions on objective, engage in discussions and oral presentations are active, and creative and innovative thinking skills well. The result of another study conducted Eko Hartadi (2009) conclude that the level of scientific literacy learners positively influenced the attitude of students towards science and educational background of parents. High-low attitude toward science learners positively influenced by the desired job learners, learning activities in the classroom, the more time spent on learning, confidence, and motivation of learners. Wahyudi & Khanafi (2009) conclude objective scientific attitude, critical, tenacious, humble, can cooperate with others and positive view of the failure can be upgraded with software development kit utilization of optical activity in learning. Prasetyoningsih (2013) provide information that the learning model based problems increase the activity of teachers and learners, problem solving skills, and the response of learners. So that teachers can apply the learning model based on this issues in order to increase the activity of learning and thinking skills of learners primarily in problem solving. Result of research conducted Anwar (2010) stated that it was the power of two methods on material digestive system can improve collaboration. Study abroad and student interest in MAN Paste Sleman. Increased collaborative learning ability of student can been from the increasing number of students who are active in the second cycle, and the better the value of each of the aspects which included: argue rationally, receive opinions for the right reason, care for the group, do the work, and help a friend.

RESEARCH METHODS

This type of research is research development, known as R & D. The step of R & D according to Borg and Gall (1983: 775) consists of 10 stages, namely (1) to collect information, (2) conduct research design, (3) develop a form of initial product, (4) conduct a preliminary field trials, (5) revise the main product, (6) conduct field to trials the preliminary, (7) to revise the main field test, (8) to test the operational field, (9) to revise the final product, (10) disseminate and implement the product.
RESULT AND DISCUSSION

The achievement of development result obtained from research and development complete the procedure. Explanation of development as follows. In the preliminary study stage is to prepare activities that will be developed product by conducting a preliminary study to obtain information needs. This phase includes the study of literature and learning in the school survey. Learning survey conducted in order to obtain information on the implementation of learning science at school and characteristics of learners. Characteristics of learners that includes academic achievement and learning behavior. The result of a preliminary study conducted in SMP N 1 Sleman, Yogyakarta; SMP N 1 Karangmojo, Yogyakarta; and SMP IT Insani Lampung as follows: 1) The curriculum used of all SMP is Curriculum 2013, 2) subject are taught not integrated science as a science of physics and biology science. Teacher who teach science derived from physics education graduate and undergraduate biology education and there is a master graduate teacher education, 3) science learning tool such as syllabi, lesson plans, LKPD, and assessment instrument held by the teachers, are still separated as the science of physics and biology, 4) learning science that is conducted based on domination concept, not to pay attention to the process of science, 5) integration of character education through science subjects has not been understood by the teacher so that the implementation is still difficult, 6) learning science oriented problem solving skills, have not been trained to students through innovative learning as it is made possible the course of solving abilities of learners is still low, 7) curriculum 2013 collaboration skills equip learners through all the lessons. However, collaboration skills have not been trained to students through innovative teaching it made possible the course of collaboration skills of students is low, 8) the topics in science subject related to the environment it is possible to facilitate learners to foster environmental awareness character, however, knowledge-oriented learning not facilitate learners to care about the environment, 9) themes/topics integration science material on contextual curriculum 2013 and the phenomenon can be experienced by learners, has not been developed by teachers, because of the book educator and students give less opportunities for the teachers to develop learning science-based theme integration, 10) scientific attitude of students is low. This may be due to the science learning without involving the active participation of learners to find concepts through experimentation, discussion, presentation. Learning centers tend teacher, 11) literacy science learners are still low. When the teacher asks a question about the topic of environmental pollution, the answer is merely conceptual learners. Not to demonstrate application of concepts to solve problems, 12) how to learn science is done by rote learners and exercises and follow the guidance of learning outside of school, 13) the concept of an integrated science teaching is not known by teachers for reason yet to be implemented and the results of science teaching workshop MGMPs deliberation and the schools do not emphasize science learning in an integrated manner.

Based on information obtained from the result of the preliminary study phase, the need for integration of research and development of science, character, and literacy as a model of learning and teaching science in junior high. The model is realized in the form of learning an instrument consisting of a syllabus, lesson plans, LKPD, and assessment instruments to develop a scientific attitude, caring environment, collaboration skills, problem solving skills and scientific literacy are packed with a theme.

Task analysis is undertaken steps to decide contents lesson plans/materials that include analysis of the content and structure analysis of concept and analysis of learning objectives. The results of the planning stages as follows: 1) on content structure, based on analyzing the core competency curriculum 2013 (KL) and the basic competency potential to be combined with a theme. The results of the analysis of KL and KD junior science lesson generated theme Acid Rain, Global Warning, and Environmental translation of KL and KD are combined science lessons on curriculum 2013 on the theme of Acid Rain is number 3 and 4. Description of competence combined as follow: 2.1) demonstrate scientific behavior (having curiosity; objective; honest;
through: careful; diligent; cautious; responsible; open; critical; creative; innovative; and caring environment) in the day-to-day activities as a form of implementation of the attitude in conducting experiments and discussion. 2.2) respect the work of individuals and groups in daily activities as a form of implementation carry out experiments and report the results of the experiment. 3) understanding of knowledge (factual, conceptual, and procedural) based on curiosity about science, technology, art, related cultural phenomena and events seem eyes. 4) tried, processing, and present in the realm of concrete (using, parse, compose, modify, and create) and the realm of the abstract (writing, reading, counting, drawing, and making up) in accordance with the studied in schools and other similar source in theory viewpoint.

Basic competence combined science subject in the curriculum 2013 is located at grade level VII resulted theme “acid Rain, Global warming, and Environmental pollution”. Description of basic competencies that are combined as follows: 3.5) understanding the characteristics of the substance, as well as physical and chemical changes in substances that can be used for everyday life (e.g. separation of the mixture), 3.9) to describe the pollution and its impact on living creatures, 3.10) describe about the causes of global warming and its effects, 4.1) conduct an investigation to determine the nature of the solution that is in the neighborhood to use artificial or natural indicators, 4.12) presenting the results of observations of the interactions of living organisms with the surrounding environment. KI and KD mapping and analysis of the concept is the integration of activities that have the potential to be used as a theme.

Analysis of learning objectives based on the KI and KD are and concepts are combined. Operationally structured learning objectives that can be measured from changes in learners' learning experience. The formulation of learning objectives that can be measured from changes in learners' learning experience. The formulation of learning objectives theme Acid Rain, Global Warming, and Environmental Pollution for VII grade as follows: 1) observing the physical changes and chemical change in the body due to the treatment of human and natural phenomena such as acid rain and to submit its observations, 2) perform resting for knowing solution characters that exist in everyday life to develop a scientific attitude of students, 3) respect for individuals and groups in discussions about the environmental effects of the number density of population, number of vehicles, the number of factories, and the effect of the eruption of Mount Merapi on rock weathering, corrosion building materials made of marble, and metal corrosion and human disturbance and growth of plants, 4) have a curiosity, objective, honest, thorough, meticulous, diligent, careful, responsible, open, critical, creative, innovative, and caring regarding environmental science concepts to design and conduct experiments on the theme of Acid Rain, 5) using acid rain scientific literacy impacts and proposed role of humans to overcome the environmental pollution that causes acid rain 6) through experimentation and discussion groups of learners can explain the causes of warming properly and global collaboration groups of learners can explain the causes of warming properly and global collaboration and instill environmental awareness, 7) through the experiment, students can explain the process of global literature studies and projects, learners can explain the various impacts and how to deal with global warming is true ambed collaboration and environment concern, 9) through group discussion participants may explain the definition of problems of environmental pollution, the types of pollution, identify the causes of environmental pollution, explain the impact of environmental pollution, make a solution of problems of environmental pollution, and choose the best solution and the reason to ask a lot of questions or statements, using the fact presented by the phenomenon, giving reason was based on the theory.

The result of learning integration Science draft, Character, and Literacy theme Acid Rain, Global Warming, and Environmental Pollution for students of class VII consists of syllabi, lesson plans, LKPD, and Authentic Instruments Assessment (IAA). The initial product in the form of a draft device developed, further validation to the matter experts and instructional technology.
teachers, and peers to obtain the feasibility of data products prior to testing in schools.

The results of each assessment by the validator on the theme of learning to acid rain, global warming, and Environmental Pollution as follows: Assessment by expert lecturers on the basis of learning is to make revisions and determine the feasibility of a device developed. Assessment by the validator is presented in Table 1.

<table>
<thead>
<tr>
<th>Product</th>
<th>Acid Rain</th>
<th>Global Warming</th>
<th>Environment Careness</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus</td>
<td>3.6</td>
<td>3.1</td>
<td>3.6</td>
<td>very good</td>
</tr>
<tr>
<td>RPP</td>
<td>3.6</td>
<td>3.2</td>
<td>3.6</td>
<td>very good</td>
</tr>
<tr>
<td>LKPD</td>
<td>3.7</td>
<td>3.1</td>
<td>3.7</td>
<td>very good</td>
</tr>
<tr>
<td>IAA</td>
<td>3.4</td>
<td>3.1</td>
<td>3.7</td>
<td>very good</td>
</tr>
</tbody>
</table>

In addition to expert lecturers, given by a science teacher assessment. Assessment by a science teacher for learning tools are the basis for the revision and determine the feasibility of a device developed. Assessment by a science teacher is presented in Table 2.

<table>
<thead>
<tr>
<th>Assessed Product</th>
<th>Acid Rain</th>
<th>Global Warming</th>
<th>Care Environment</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus</td>
<td>3.5</td>
<td>3.6</td>
<td>3.3</td>
<td>very good</td>
</tr>
<tr>
<td>RPP</td>
<td>3.4</td>
<td>3.8</td>
<td>3.5</td>
<td>very good</td>
</tr>
<tr>
<td>LKPD</td>
<td>3.6</td>
<td>3.6</td>
<td>3.2</td>
<td>very good</td>
</tr>
<tr>
<td>IAA</td>
<td>3.5</td>
<td>3.8</td>
<td>3.3</td>
<td>very good</td>
</tr>
</tbody>
</table>

Assessment of the device involves peers. Assessment by peers on the basis of learning is to make revisions and determine the feasibility of a device developed. Assessment by peers is presented in Table 3.

<table>
<thead>
<tr>
<th>Assessed Product</th>
<th>Acid Rain</th>
<th>Global Warming</th>
<th>Care Environment</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus</td>
<td>3.6</td>
<td>3.4</td>
<td>3.4</td>
<td>SANGAT BAIK</td>
</tr>
<tr>
<td>RPP</td>
<td>3.6</td>
<td>3.4</td>
<td>3.5</td>
<td>SANGAT BAIK</td>
</tr>
<tr>
<td>LKPD</td>
<td>3.6</td>
<td>3.1</td>
<td>3.3</td>
<td>SANGAT BAIK</td>
</tr>
<tr>
<td>IAA</td>
<td>3.4</td>
<td>3.2</td>
<td>3.4</td>
<td>SANGAT BAIK</td>
</tr>
</tbody>
</table>

The mean rating for the component validator syllabi, lesson plans, LKPD and IAA did not have a big difference. (Level of agreement) obtained from calculating the difference in assessment scores validator. The magnitude of the difference in valuation as a benchmark for the level of agreement feasibility of the tools provided by the validator. Increment ≥ 1 can be said low
levels of agreement and difference feasibility assessment ≤ 1 said the feasibility of high-level agreement.

Increment of 0.33 syllabus validator that can be said feasibility level agreement "high" given by the validator to the syllabus. RPP revaluation increment of 0.66, 0.33 LKPD valuation difference, and the difference IAA 0, 6 so that it can be said feasibility level agreement "high" given validator to the RPP, LKPD, and IAA. Average ratings validator is presented in Figure 1.

![Graph showing mean rating for syllabus, RPP, LKPD, and IAA](image)

Description: assessment by expert blue, red by the teacher, and the green color by peers.

Figure 1

Average of assessment by Validator

Limited testing done in class VII B SMP N 1 Sleman with six test subjects learners using the second draft of the Acid Rain Theme learning which is a revision I. Experimental results limited form of information LKPD legibility of the content aspect, graphics, and language. Limited trial results are presented in Table 1 Sleman limited 4.1. Uji try also done in SMP N Karangmojo using learning tools with a focus Theme Global Warming sample observations 10 students. Samples were selected based on science achievement of students. The achievement data retrieved from a data value IPA. The details of the first semester students are high capability 3 people, being 4 people, and the low 3 people. The trial results are limited in the form of student learning, collaborative inquiry, and environmental awareness questionnaire. Limited trial results are presented in Table 4.

Table 4

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Academic Achievement Learners</th>
<th>advisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>understanding</td>
<td>understood</td>
<td>understood</td>
</tr>
<tr>
<td>instructions</td>
<td>obeyed</td>
<td>obeyed</td>
</tr>
<tr>
<td>experience</td>
<td>experience</td>
<td>experience</td>
</tr>
</tbody>
</table>

Given information about the function of experimental tools and materials and given a glossary of terms elusive.
The next trial is done in junior IT Human disposition. Limited test conducted to obtain data effectiveness of learning tools developed themes of Environmental Pollution. Indication of the effectiveness of the device can be seen on the achievement of learning outcomes. Student learning outcomes assessment of the ability of science literacy and problem-solving skills acquired from pretest and posttest was done in class VII-B junior IT disposition Human Bandar Lampung.. limited trial results presented pada Table 6.

Table 6

Learning Outcomes of Students SMP IT Fitrah Insani

<table>
<thead>
<tr>
<th>Number of Students</th>
<th>Average Literacy Gain score</th>
<th>Average Problem solving gain score</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.49</td>
<td>Sedang</td>
</tr>
</tbody>
</table>

The trial results more widely in SMP 1 Sleman using pre-experimental designs with models of one-group pretest-posttest design. The reason for using the model of one-group pretest-posttest design, to determine the effectiveness of science teaching tools are developed. More extensive trials conducted in class VII F SMP N 1 Sleman the number of learners 33 people. Larger trials to study the effectiveness of the information that was developed to increase the scientific attitude and scientific literacy of students from the state before and after the device applies applied science learning. Data wider trial results include competency assessment before and after the knowledge domain of learning competence assessment realm of attitudes in the form of a scientific attitude during the study, a questionnaire scientific attitude of learners, and the feasibility sheet RPP. Data broader test results as follows:

Learning outcomes realm of knowledge are gained from the pre-test and post-test. Knowledge domain of test instruments to measure learning outcomes is based on KI, KD,
indicators, and dimensions of scientific literacy. Dimensions of literacy includes the content, process, and application of scientific literacy so that it can be assumed the achievement of learning outcomes is the knowledge domain of scientific literacy achievement. Thoroughness of student learning outcomes of achievement criteria specified (KKM). KKM science subjects in SMP N 1 Sleman of 75. The results are presented in Table 7.

Table 7

<table>
<thead>
<tr>
<th>The number of students</th>
<th>Average yield of learning outcomes Pretest</th>
<th>Number of students who reach KKM Pretest</th>
<th>Average yield learning outcomes Posttest</th>
<th>Number of students who reach KKM Posttest</th>
<th>Average yield gain scores</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>63.3</td>
<td>6</td>
<td>80.0</td>
<td>31</td>
<td>0.52</td>
<td>sedang</td>
</tr>
</tbody>
</table>

The results of pre-test there were six learners achieve KKM and post-test results are 31 learners achieve KKM. Achievement of learners gain scores are presented in Table 8. Attainment of learning outcomes and gain scores are presented in Figure 2 and 3.

Table 8

<table>
<thead>
<tr>
<th>Gain scores Achievement of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
</tr>
<tr>
<td>(g) ≥ 0.7</td>
</tr>
<tr>
<td>(g) ≥ (g) ≥ 0.3</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Tinggi</td>
</tr>
<tr>
<td>Sedang</td>
</tr>
</tbody>
</table>

Figure 2

Achievement Student Results SMP N 1 Sleman
Figure 3

Achievement Gain Score SMP N 1 Sleman

Achievement test realm of attitudes in the form of scientific attitude actualization learners during the learning and measured using observation sheet instruments attitude. The value obtained is then converted using 4 according Mardapi scale. The average results of learning domains are presented in Table 9.

Table 9

<table>
<thead>
<tr>
<th>The number of students</th>
<th>Average Acquisition Test Attitude of students</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>3.26, 3.49, 3.57</td>
<td>very good</td>
</tr>
</tbody>
</table>

Scientific attitudes such as curiosity, honest, critical thinking, and collaboration owned learners has increased from meeting to I, II and III and get an A (Excellent). Increasing scientific attitudes of learners can be assumed as a learning tool to facilitate learners to have curiosity by presenting the phenomenon with the video demonstrations and activities. In addition, the device of learning tools facilitate learners to have an attitude of honesty to write and deliver data from experimentation. Courage to criticize and present the results of experiments by students facilitated the presentation and assessment of the activities of the experimental results. Learning outcomes realm of attitudes presented in Figure 4.

Figure 4

Learning Outcomes Domains Attitude

Questionnaire responses learners used to obtain information about the achievement of scientific attitude after learning to follow. Questionnaires are given to students at the end of the questionnaire pembelajaran. Learners respond calculated by formula 4 page 36. Results of studying the realm of attitudes that learners achieved, then converted using a scale of 4 by Mardapi (2008, p.163). Questionnaire responses of learners are presented in Table 10.

Table 10

Scientific Attitude Questionnaire Response
Questionnaire response was very positive learners assumed for learning activities as outlined in the device is capable of facilitating learners to develop a scientific attitude through experimentation, discussion, reporting the results of experiments, group work and presentations provide learners experience to be honest, collaboration, and critical thinking and curiosity. Questionnaire responses of learners SMP N 1 Sleman presented in Figure 6.

![Figure 6](image)

very positive positive

Table 11

<table>
<thead>
<tr>
<th>Implementation of RPP</th>
<th>Percentage feasibility of RPP</th>
<th>Average feasibility of RPP RPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning I (%)</td>
<td>Learning II (%)</td>
<td>Learning III (%)</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

More extensive trials in junior IT disposition Human provide information that the competence of knowledge of learners, the average acquisition value of knowledge competencies learners VIIa and VIIIC class increases. A number of 24 students in the class VIIa acquire literacy skills IPA gain scores by an average of 0.07 with the category of "low" and gain problem-solving skills scores an average of 0.28 with the category of "low". A number of 25 students in the class VIIIC acquire literacy skills IPA gain scores by an average of 0.10 with the category of "low" scores gain problem-solving skills by an average of 0.42 with the category of "moderate". Peningkatan gain scores of students in the category low and medium assumed devices developed, teachers and students not accustomed to using integrated learning. Difficulty in understanding the
concept of integration to be one of the obstacles faced by teachers.

The average value of the competence of learners attitudes VIIa class of the meeting to the I to III of 2.82 2.92 3.19. VIIc grade of 2.62 2.91, 3.20. Attitudes such as curiosity, critical thinking, creative thinking, and care for the environment has increased from the first meeting, second, and third and earn a grade of B with the criteria of "good". Increasing the value of the competence of learners attitude assumed for science learning device arranged to facilitate learners to develop curiosity, critical thinking, creative thinking, and caring environment with an explanation as to which the increase in the value of the competence of the attitude of learners.

Data collaboration of students of SMP N 1 Karangmojo obtained using questionnaires and observation sheets. The results of the questionnaire showed that the class collaboration VIIa as an experimental class get pretest scores at posttest score of 8.6 6,5, dan 10. In the control class or classes VIIe, obtained a score of pretest posttest scores of 10 and 13.13. Experimental class and control class had elevated scores obtained by the gain in the low category for the experimental class and category are for classroom control with self 0.05. This may be due to the element of guessing (guessing) that is higher than the control class collaboration experiment. Berbeda with the results of the questionnaire, the results of the experimental observation of a higher class collaboration of acquisition than the control class. Berdasarkan it can be concluded that the experimental class has a higher kolabori compared to the control class. CTL learning models are used it is possible to facilitate learners to mengembangkan collaboration. The advantages of the model CTL learners are able to develop CTL (Arends, 2008). Studying in groups, dividing tasks, spell everything together will train students to have collaboration.

Data environmental awareness of students of SMP N 1 Karangmojo obtained using questionnaires and observation sheets. The results of the questionnaire showed that environmental concern in the class as a class experiment VIIa get pretest scores of the posttest pretest scores of 13.6 and amounted to 15.67. In the control class or classes VIIe, obtained a score of 16 and a value pretest posttest 16.17. Experimental class and control class had elevated scores obtained by the gain in the category of experimental class and lower category to a class of control by a margin of 0.28. The results of the experimental observation of environmental awareness class higher than the control class with a difference of 31.3. This may be due to the experimental class pembelajarann pda device used by a character-based workshops menambahkan wisdom "ching-ching roll". Local knowledge is integrated in the learning derived from Gunung Kidul ritual purposes in the form of natural preserve local village. It is presumed capable memungkinkan character eco learners.

The results obtained menggandakan learners test instrument. Before and after learning the theme of Global Warming given a test to determine the increase. VIIa class as a class experiment pretest scores of 72.33 and posttest score of 88.83. VIIe class, a score of 73.74 pretest and posttest value of 86.09. Gain scores experimental classes and control classes in the medium category. Difference in learning outcomes and classroom control classroom experiment is very small. This may be due to students of SMP N 1 Karangmojo average intelligence junior high because the first international school (RSBI) which requires learners to have a good performance in order to be accepted at the school.

CONCLUSION AND SUGGESTION

Product feasibility assessment model learning device Integration, character and literacy as a model of learning and teaching science in junior high school on the theme of Acid Rain, Global Warming, and Environmental Pollution VII class junior scored a very good category and the average total score ≥ 3.1. Scientific attitude, collaboration, environmental awareness, the ability to solve problems and literasains learners who follow the model of learning by applying Integration, character and literacy as a model of learning and teaching science in junior high school on the theme of Acid Rain, Global Warming, and Environmental Pollution class VII SMP N 1 Sleman, SMP N 1 Karangmojo, and Junior IT disposition Human increased. Constraints faced
in implementing the device that teachers and students are not accustomed to applying science learning that uses the theme keterapaduan.

The advice obtained from this study include: 1) Device Integration models of learning, character and literacy as a model of learning and teaching science in junior high school on the theme of Acid Rain, Global Warming, and the Environment Pencemara junior class VII can be utilized to the maximum recommended by the science teachers and provide guidance to formulate and develop learning tools with different themes, 2) test results provide information products that device models Integration, character and literacy as a model of learning and teaching science in junior high school on the theme of Acid Rain, Global Warming and Pollution class VII SMP environment can improve the scientific attitude, collaboration, environmental awareness, problem-solving skills and scientific literacy learners, the need for cooperation between the principal, who is a science teacher tutor teacher, a science teacher at a junior, and other relevant parties to utilize and implement Integration pembelajaranperangkat device models, character and literacy as a model of learning and teaching science in junior high. In addition, the fulfillment of teaching aids and monitoring and evaluation of learning that emphasizes the character needs to be done by the parties implementing the school.

Development of learning tools only do the models Integration, character and literacy as a model of teaching and learning science in junior high school in the material Acid Rain, Global Warming, and Environmental Pollution for further product development is done and developed by a science teacher with a different material. Therefore, the preparation and development of the training should be given to science teachers.

REFERENCES

Ekohariadi. (2009). Factors Affecting Science Literacy Learners Indonesia 15 Years [electronic

Kemendikbud. (2013 a). Government Regulation No. 64, in 2013, on the Content Standards.

SE-60

Sugiyono. (2012). Research Methodology Quantitative, Qualitative and R & D. Bandung: Alfabeta

SE-61
ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>Source</th>
<th>Similarity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmseunnes.com</td>
<td>12%</td>
</tr>
<tr>
<td>eprints.uny.ac.id</td>
<td>10%</td>
</tr>
<tr>
<td>Submitted to Universitas Negeri Surabaya The State University of Surabaya</td>
<td>6%</td>
</tr>
<tr>
<td>lib.unnes.ac.id</td>
<td>7%</td>
</tr>
<tr>
<td>eprints.uad.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>docplayer.net</td>
<td>1%</td>
</tr>
<tr>
<td>digilib.unimed.ac.id</td>
<td><1%</td>
</tr>
</tbody>
</table>

PRIMARY SOURCES

1. **icmseunnes.com**
 - Internet Source
 - 2%

2. **eprints.uny.ac.id**
 - Internet Source
 - 2%

3. **Submitted to Universitas Negeri Surabaya The State University of Surabaya**
 - Student Paper
 - 1%

4. **lib.unnes.ac.id**
 - Internet Source
 - 1%

5. **eprints.uad.ac.id**
 - Internet Source
 - 1%

6. **docplayer.net**
 - Internet Source
 - <1%

7. **digilib.unimed.ac.id**
 - Internet Source
 - <1%

 - <1%

Submitted to Universiti Malaysia Perlis
Student Paper

f.library.uny.ac.id
Internet Source

Submitted to Universitas Riau
Student Paper

unsri.portalgaruda.org
Internet Source

Publication
Desi Ariana, Risya Pramana Situmorang, Agna Sulis Krave. "PENGEMBANGAN MODUL BERBASIS DISCOVERY LEARNING PADA MATERI JARINGAN TUMBUHAN UNTUK MENINGKATKAN KEMAMPUAN LITERASI SAINS SISWA KELAS XI IPA SMA", Jurnal
<table>
<thead>
<tr>
<th>FINAL GRADE</th>
<th>GENERAL COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/100</td>
<td>Instructor</td>
</tr>
</tbody>
</table>

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16