DAFTAR ISI

International Journal of Instruction (IJI):

1. Screen capture IJI dari Scopus.com
2. Screen capture IJI dari scimagojr.com
3. Sampul (about) IJI
4. Editorial Board IJI
5. Daftar Isi IJI Vol.: Vol.13, No.1 January 2020
6. Copy Artikel
Source details

International Journal of Instruction
Open Access
Scopus coverage years: from 2013 to 2019
Publisher: Faculty of Education, Eskisehir Osmangazi University
ISSN: 1694-609X E-ISSN: 1308-1470
Subject area: Social Sciences: Education

CiteScore 2018
1.38
Add CiteScore to your site

SJR 2018
0.348

SNIP 2018
1.844

CiteScore rank
Category: Social Sciences
Rank: 129/1038

CiteScoreTracker 2019
Last updated on 08 January, 2020

CiteScore 2019
1.71

*Metrics displaying this icon are compiled according to Snowball Metrics, a collaboration between industry and academia.
International Journal of Instruction

Country: Turkey - SIR Ranking of Turkey

Subject Area and Category:
- Social Sciences
- Education

Publisher: Faculty of Education, Eskisehir Osmangazi University

Publication type: Journals

ISSN: 1694609X, 13081470

Coverage: 2013-ongoing

Scope: International Journal of Instruction is an internationally recognized journal in the field of education and is published four times a year (in January, April, July & October). The aim of this journal is to publish high quality studies in the areas of instruction, learning, teaching, curriculum development, learning environments, teacher education, educational technology, educational developments. Studies may relate to any age level - from infants to adults. IJI, being an international journal, our editorial advisory board members are from various countries around the world. The articles sent to the Journal are always reviewed by two members of the Editorial Advisory Board (double blind peer review), and in some cases, if necessary, by another member of the Board. Depending on the evaluation reports of the members of the Editorial Advisory Board, articles are published or not. Article evaluation process takes approximately three months. The authors are responsible for the errors, if any, in their published articles. The articles need to be not published elsewhere previously.

H Index: 10

Homepage
How to publish in this journal
Contact

Join the conversation about this journal
ETHICS, STANDARDS & RESPONSIBILITIES

The mission of the International Journal of Instruction is to contribute to the literature of instruction by publishing high quality studies in the areas of instruction, learning, teaching, curriculum development, learning environments, teacher education, educational technology, educational developments. Studies may relate to any age level - from infants to adults.

IJI, being an international journal, our editorial advisory board members are from various countries around the world. The articles sent to the Journal are always reviewed by two members of the Editorial Advisory Board (double blind peer review), and in some cases, if necessary, by another member of the Board. Depending on the evaluation reports of the members of the Editorial Advisory Board, articles are published or not. Article processing takes approximately three months. The authors are responsible for the errors, if any, in their published articles. The articles need to be not published elsewhere previously.

Open Access Policy

International Journal of Instruction aims to increase visibility and make easier use of open access scientific papers. Readers and their institutions are supported for online access without asking for any royalty, personnel information, or log in process. According to open access policy of our journal, all readers are permitted to read, download, copy, distribute, print, link and search our articles with no charge.

To the Editors of IJI

To ensure editorial ethics, editors should be careful not to discriminate authors with respect to their genders, religious or political beliefs, ethnic or geographical origin and should handle all the articles in the same way to assess academic merit only. Every submission to the IJI should be evaluated in the same way and ethical complaints should be subjected to reasonable procedures as follows:

Any unethical behaviour or misconduct reported to or noticed by editors should be thoroughly investigated. Identification of the violation should require further procedure. Any suspicious case should be taken seriously and an initial decision should be made by the editors.

If the initial decision of the editor approves an unethical behaviour or misconduct, all the evidence should be collected and further negotiated with a group of editorial board members formed to deal with the case. In case of a minor misconduct, the editor should keep the group small and the editor should give the chance to respond to the author. If there is a serious misconduct, the employers of the accused may be needed to be notified of the case. Involvement of the employer should be decided as a result of a brief investigation and consultation with editorial board members and experts.

Outcomes of an ethical violation or misconduct may include informing or educating the author or reviewer where there appears to be a misunderstanding or misapplication of acceptable standards or a more strongly worded letter to the author or reviewer covering the misconduct and as a warning to future behaviour. If the case is very serious, and the editorial board members decides to do so, a formal notice or even an editorial detailing the misconduct may be published detailing the misconduct. If the case requires, a formal letter may be sent to the head of the author's or reviewer's department or funding agency. In case of a minor misconduct, the editor should keep the group small and the editor should give the chance to respond to the author. If there is a serious misconduct, the employers of the accused may be needed to be notified of the case. Involvement of the employer should be decided as a result of a brief investigation and consultation with editorial board members and experts.

To the Reviewers

Reviewers should review the manuscripts in an objective way and in a timely manner so they can contribute to the decision-making process, and assist in improving the quality of the published paper. They should maintain the confidentiality of any information supplied by the editor or the author and not retain or copy the manuscript. It is reviewers' responsibility to alert the editor to any published or submitted content that is substantially similar to that under review. They should be aware of any potential conflicts of interest (financial, institutional, collaborative or other relationships between the reviewer and author) and to alert the editor to these, if necessary withdrawing their services for that manuscript.

To the Authors

Authors should maintain accurate records of data associated with their submitted manuscript, and provide access to these data, on reasonable request. They should keep the data associated with their manuscript in a suitable repository for sharing and further use by others where appropriate and where allowed by employer, funding body and others who might have an interest on the data. Authors must confirm/assert that the manuscript as submitted is not under consideration or accepted for publication elsewhere. Where portions of the content overlap with published or submitted content, those sources must be acknowledged and cited. Additionally, authors must provide the editor with a copy of any submitted manuscript that might contain overlapping or closely related content.

Authors must confirm that all the work in the submitted manuscript is original and to acknowledge, and being an international journal, their content responsibility to obtain permission to reproduce any content from other sources. Authors should ensure that any studies involving human or animal subjects conform to national, local and institutional laws and requirements (e.g.,
Authors should notify our editors promptly if a significant error in their publication is identified. They shall cooperate with the editor and publisher to publish an erratum, addendum, corrigendum notice, or retract the paper, where this is deemed necessary.

PS: More Information on author guidelines can be found under the 'author Guidelines' heading.
Editorial Board (editorial-board)

Owner
GATE Academy (http://www.gate.kg)

Editor in Chief
Prof. Asım ARI (editorial-board/104-dergiler/301-prof-asim-ari)
Eskişehir Osmangazi University, TURKEY

Managing Editor
Dr. Gökhan KAYIR
SWISS

Assistant Editors
Dr. Kerim SARIGÜL (http://kerimsarigul.com/hakkimda)
Yunus Emre Institute

Editors
Prof. Yousif A. ALSHUMAIMERI (http://faculty.ku.edu.sa/yousif/default.aot)
King Saud University, SAUDI ARABIA

Prof. Luis E. ANIDO RIFÓN (http://www-gist.det.uvigo.es/~lanido/)
University of Vigo, SPAIN

Prof. Trevor G. BOND (http://www.ied.edu.ki/epcl/about/staff_bondt.htm)
Hong Kong Institute of Education, HONG KONG

Prof. Do COYLE (http://www.lri.nottingham.ac.uk/Staff/Do_Coyle.php)
The University of Aberdeen, UNITED KINGDOM

Prof. Angelique DIMITRACOPOULOU (http://frcog.org/admin/?page_id=62)
University of the Aegean, GREECE

Prof. William J. FRASER (http://www.killickcentre.ca/bios/stevens.html)
Memorial University of Newfoundland, CANADA

Prof. Christoph RANDLER (http://www.ph-heidelberg.de/biologie/personen/lehrende/randler.html)
University of Education, GERMANY

Prof. Selahattin TURAN
Bursa Uludag University, TURKEY

Editorial Assistant
Nurşen BERK
MEB, TURKEY

Language Editorial Board
Sadik Muhammad YAQUB – Arabic
Bangladesh Islami University, BANGLADESH

Dr. Nurdwahida Hj AZID – Malaysian
University Utara Malaysia, MALAYSIA

Rza Mammadov – Russian

Editorial Assistant
İsmail KAŞARCI
Eskişehir Osmangazi University, TURKEY

Editorial Assistant
İsmail KAŞARCI
Eskişehir Osmangazi University, TURKEY

Author Guidelines
Gate Association for Teaching and Education
(http://www.gateacademy.c)

International Congress
(http://www.gateacademy.c)
January 2020, Volume 13, Number 1 (volumes/359-January-2020,-volume-13,-number-1)

From the Editor: The Curricular System at the University of Basel, Switzerland (doi:10.1111/iji.2020.1.1.pdf)

Zeynep Köylü

The Impact of Genre Based Instruction on EFL Learners’ Writing Development (doi:10.1111/iji.2020.1.2.pdf)

Siriuda Thongchaleon, Wisut Jaturawatthewai

The Role of Critical Thinking as a Mediator Variable in the Effect of Internal Locus of Control on Moral Disengagement (doi:10.1111/iji.2020.1.3.pdf)

Tahiric, Farid Selh Nuadin, Ida Royani Damayanti

The Relationship among University Students’ Trust, Self-Esteem, Satisfaction with Life and Social Media Use (doi:10.1111/iji.2020.1.4.pdf)

Ismael Acun

M. J. Dewiyani Sanurto, Bambang Harjadi, Tri Sagirin, Tan Amelia, Juliano Lemantara

Ida Ayy Made Sri Widianasti, Nur Makhmud, Johannes Ananto Prayogo, Enny Irawati

Relationships between Cognitive Flexibility, Perceived Quality of Faculty Life, Learning Approaches, and Academic Achievement (doi:10.1111/iji.2020.1.7.pdf)

Çetin Varman, Hasan Fehmi Özdemir, Ayşen Melke Atug Köşan, Şenol Orakçı

Munandri, Nur Kholtif, Nuri Myalib

Khalid M Alsharif, Naem M Alamri

Thail Nar Amati, Kristian Handayo Sugiyarto, Jadim Ihsan

Majinda Gjelaj, Kastriot Buza, Kyvete Shatri, Naser Zabeli

Muntasir R., Iftiz, Iftiz

Hasan M. Al-Wadi

Merce Sri Harati, HPG Suryadarma, Farida Hansam

Aliff Nasri, Ganam Abdul Naiz Zakaria, Norhairiah Hashim, Salvo Mahalle, Chua Chy Ren

Dwi Wahyudiati, Eli Rohaeti, Irwanto, Antuni Wiyarsi, Lalu Sumantri

Effectiveness of Cooperative Learning in English Communicative Ability of 4th Grade Students in Bhutan (doi:10.1111/iji.2020.1.17.pdf)

Toshihiko Endo, Angkana Osthanc

Sophia Batsiou, Stamatis Bouroudis, Panagiotis Antoniou, Savvas P. Tokmakidis

Aungyan Dwi Astiningung, Cyns Fajrul Paruna

Pham Vu Phi Ho, Luong Thi Kim Phuong, Tran Thi Thuy Oanh, Nguyen Quang Giao

Sawate, Badijanto, Budi Handoyo, Singgih Suwito
Abdulrahman Ghalib Almekhlafi, Sadiq Abdullwad Ismail, Abdelmoniem Ahmed Hassan
Comparing Math Anxiety of Scientific Facilities Students as Related to Achievement, and Some Variables
().((doi:))().

Mamoon M. Mubarak Al-Shannaq, Johanna Leppävirra
EFL Teachers’ Attitudes towards Language Learners: A Case of Multicultural Classrooms
().((doi:))().

Martina Kustati, Yuniwira Qismumlah Yusuf, Halim, Hidayat Al-Ayni, Sefrul
Development of a Unity in Diversity-based Pancasila Education Text Book for Indonesian Universities
().((doi:))().

Aim Abdullkarim, Kokom Komalasari, Didin Saripuddin, Neiny Ratmaningtyas, Dilya Noor Anggraeni
The Effect of Jumping Task Based on Creative Problem Solving on Students’ Problem Solving Ability
().((doi:))().

Habib, Imra Khoirul Umam, Nastik Yuliati, Daffik
Metacognitive Monitoring in Test-taking Situations: A Cross-cultural Comparison of College Students
().((doi:))().

Mariana V. C. Coutinho, Elena Papamastasious, Stylianos Agni, John M. Vasko, Justin J. Couchman
Developing an Instrument to Measure Pedagogical Content Knowledge Using an Action Learning Method
().((doi:))().

Zulfikar Almudin, Javan Hidayat Tjandraatmadja, Achmad Ghozali
Blending Problem Based Learning with Scientific Argumentation to Enhance Students’ Understanding of Basic Genetics
().((doi:))().

Tashi Choden, Sitinapa Kijjursukul
The Effect of Problem-Based Learning on Lateral Thinking Skills
().((doi:))().

Romy Fatni Mutno, Yeni Ratna Hidayah
The Effect of Second Language Reading Strategy Instruction on Young Iranian EFL Learners’ Reading Comprehension
().((doi:))().

Jafil Fathi, Maysun Araf
Project Based Learning and Academic Procrastination of Students in Learning Physics
().((doi:))().

I Wayan Santyasa, Ni Ketut Rapli, I Wayan Windu Sara
Inculcating Self-editing Skills for Enhancing Writing Skills of the EFL Students
().((doi:))().

Valentina Sanyertha
Self-image of in-School Adolescents in Orfa Local Government Area of Kwara State, Nigeria: Implications for Counselling Practices
().((doi:))().

Aminat Adeola Adobode
Trend of Critical Thinking Skill Researches in Biology Education Journals across Indonesia: from Research Design to Data Analysis
().((doi:))().

Ekso Sastyanirmi, Ahmad Fauzi
E-Task-Based Learning Approach to Enhancing 21st-Century Learning Outcomes
().((doi:))().

Ali M. Al Kandari, Mowaa M. Al Quttan
The Effects of Knowledge-Transforming Text on Elementary Students’ Declarative, Procedural Knowledge, and Motivation in Environmental Learning
().((doi:))().

Rusdhianti Wayusantyong, Sengphob Ricketts, Imam Sayitno
The Effect of Complex Instruction Team Product (CTTP) Learning Model on Increase Student’s Skills
().((doi:))().

Dominoos Ramahitatu, Kristin Sanger, Single Lilin
Leadership and Functional Competence Development in Teachers: World Experience
().((doi:))().

Anna Berestova, Natalya Gayfullina, Sergey Tikhomirov
Integrating Instruction Approach with Learners’ Cognitive Style to Enhance EFL Indonesian Students’ Writing Achievement
().((doi:))().

Sajjin, Wilson Mahir Mutaqin
The Effects of Implicit Learning on Japanese EFL Junior College Students’ Writing
().((doi:))().

Hiroyo Nakagawa, Ambrose Leong
The Effectiveness of the MIRS Approach in Improving Research Paper Writing of Culinary Arts Vocational Student
().((doi:))().

Endang Maylutininginingsih, Sapijono
The Impact of Scientific Approach and What-If-Not Strategy Utilization towards Student’s Mathematical Problem Posing Ability
().((doi:))().

Harry Dwi Putra, Tatang Herman, Utari Sumarmo
The Effect of e-portfolio on Biological Concepts Understanding and Responses of Students with Different Academic Achievement Levels
().((doi:))().

Markben Luknisari, Rusdi Hasan, Ahmad Sukir
Gauging the Level of Reflective Teaching Practices among Science Teachers
().((doi:))().

All Khaled Bawaneh, Ahmed Boudjemda Hamida Moumene, Osamah ABDUalah
The Effectiveness of Guided Inquiry Learning (GIL) and Problem-Based Learning (PBL) for Explanatory Writing Skill
().((doi:))().

Benin Siti Putri, Slamet Suhaibyanto, Rochak, Trimanto
The Effect of Local Wisdom-Based ELSII Learning Model on the Problem Solving and Communication Skills of Pre-Service Islamic Teachers
().((doi:))().

Adi Fadli, Irwanto
A Case Study on Improving Reading Fluency at a University in the UAE
().((doi:))().

Jenny Eppard, Sandra Baroudi, Aicha Rochdi
The Development of a Metacognition Instrument for College Students to Solve Physics Problems
().((doi:))().

Sara Soria, Mar Guirrezo-Cohín, Anca Daniela Frumuselu
Feedback and Mobile Instant Messaging: Using WhatsApp as a Feedback Tool in EFL
().((doi:))().
The Impact of Combining Communicative Traits of Writing with Cooperative Learning on Trainee Teachers' Pedagogical Knowledge and Attitudes (/dosyalar/iji_2020_1_52.pdf)

Abdelaziz M. Hussien
Evaluating the Use of Multicultural-based Short Story Appreciation Textbook to Teach Prose-Fiction Appreciation Course (/dosyalar/iji_2020_1_53.pdf)

Muhamad Sholehuddin, Herman J. Wuluyo, Sayyono, Nugraheni Eko Wardhani
A Meta-Analysis of Selected Studies on the Effectiveness of Gamification Method for Children (/dosyalar/iji_2020_1_54.pdf)

Muhibuddin Fadhli, Billy Brick, Punaji Setyosari, Saida Ulfia, Dedi Kuswandhi
Mathematics Teaching Using Word-Problem: Is it a Phobia? (/dosyalar/iji_2020_1_55.pdf)

Heba Bakr Khoshaim
The Effect of Experiential Learning and Adversity Quotient on Problem Solving Ability (/dosyalar/iji_2020_1_56.pdf)

Mifta Hulaikah, I Nyoman Sudana Degeng, Sultan, F. Danardana Murwani
New Tendencies in Studies within Vocational Education in Russia (/dosyalar/iji_2020_1_57.pdf)

Anna V. Berestova, Anastasia V. Lazareva, Vyacheslav V. Leontyev
Relationship between Demographic Factors and Undergraduates’ Cyberbullying Experiences in Public Universities in Malaysia (/dosyalar/iji_2020_1_58.pdf)

David Obafemi Adebayo, Mohd Tajudin Ninggal, Foluke Nike Bola-Steve
Enhancing Self-Regulation Skills through Group Investigation Integrated with Think Talk Write (/dosyalar/iji_2020_1_59.pdf)

Lina Lištiana, Rabarjo, A. Suelpul Hamdani
A Comparison of the English Grammatical Errors of Chinese Undergraduates from China and Malaysia (/dosyalar/iji_2020_1_60.pdf)

Lin Siew Eng, Chen Luyue, Chang Kuan Lim

International Journal of Instruction is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Effect of 3D Visualization on Students’ Critical Thinking Skills and Scientific Attitude in Chemistry

Tiwi Nur Astuti
S.Pd., Chemistry Education Master’s Programme, Graduate School, Universitas Negeri Yogyakarta, Indonesia, tiwinura.2017@student.uny.ac.id

Kristian Handoyo Sugiyarto
Prof. Dr., Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia, sugiyarto@uny.ac.id

Jaslin Ikhsan
M.App.Sc. Dr., Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia, jikhsan@uny.ac.id

The 3D visualization program paves the way for the development of virtual reality. This study produces a 3D visualization program in virtual reality to increase high school students’ critical thinking skills and scientific attitude. The Research and Development (R&D) method was based on the ADDIE model - analysis, design, develop, implement, and evaluate with quasi experimental – pre-test design. The data of students’ scientific attitude was collected through questionnaire adapted from several books and journals, and those of the students’ critical thinking skills was collected through chemical bonding test. A total of 96 grade 10th students were cluster randomly selected from senior high school in Gunungkidul Regency, Yogyakarta, Indonesia. The samples were set into three different classes, namely Class CG using a wet laboratory, Class EG-1 using a virtual reality laboratory integrated hybrid learning, and Class EG-2 using both of them. Based on the MANOVA test, it was found that students who used 3D visualization had better results in critical thinking skills and scientific attitudes.

Keywords: 3D visualization, virtual reality, hybrid learning, critical thinking skills, scientific attitude

INTRODUCTION

The new national curriculum emphasizes the importance of 21st century skills. The 21st century skills were known as 4C which include critical thinking and problem solving, communication, collaboration, creativity and innovation (Roekel, 2012). Students were required to be more active in learning so they can find concepts with direct experience.
and train critical thinking to solve problems. The 21st century skills encourage students to develop their participation in learning, encourage communication and cooperation, improve their critical thinking skills, access and analyze information communication technology, and find a concept through their creativity by developing scientific attitudes in order to solve problems (Saavedra & Opfer, 2012; Wagner, 2008).

Critical thinking can be defined as the art of analysis and evaluating thinking with improving skills and attitudes (Paul & Elder, 2006). Critical thinking tests can use short essays to evaluate arguments or use multiple choice questions (Bart 2010; Ennis, 1993; Ennis, 2009). The purpose of critical thinking was to test an opinion or idea, including taking into consideration or thinking based on the opinions proposed. Students must be able to interpret, analyze, evaluate, explain, and conclude the problems that exist. Teachers should get their students to apply critical thinking processes to encourage critical thinking skills (Daud & Husin, 2004) and to use new information or manipulate existing knowledge so as to obtain reasonable responses to new situations (Lewis & Smith, 1993; Perkins & Murphy, 2006).

Scientific attitude is the ability to react consistently, rationally, and objectively in a certain way to deal with a problem that is reflected through one's behavior (Olasehinde & Olatoye, 2014; Jancirani et al., 2012). Activities of students in carrying out a scientific research to sharpen their scientific knowledge and skills is an action that reflects a scientific attitude. Teachers’ role in teaching and learning process also influences the motivation to be scientific in students (Senler, 2016). When the teacher gives examples of scientific attitudes in learning activities, it will lead to a desire in students to participate in doing scientific attitudes in their daily lives. Scientific attitude includes attitude of curiosity, open-mindedness, attitude of discovery, open attitude, honesty, critical thinking, objective, responsibility, cooperation, and firm stance is someone who has a scientific attitude (Pitafi & Farooq, 2012; Astutik & Praharani, 2018).

Virtual learning is a new generation of types of learning using computers (Bakar et al., 2013). Virtual package represents a comprehensive application of computer modeling, simulation technologies, and analysis. As technology develops, a lot of research is done by utilizing 3D visualization models in a software to provide real-world representation. The 3D visualization makes it possible for people to see things that are unlikely to be seen in the real world, and observe things that are not possible in the real world (Wu et al., 2010). Virtual reality (VR) is a new 3D interpretation environment built on the basis of 3D visualization. Visualization technologies have intrinsic properties and activate cognitive tools that help students to learn and even build content with what they studied or understood on their subject contents (Sural, 2018).

Virtual reality was very useful in helping students understand how to design research experiments because using a computer system can provide a good simulation of what should happen in the real world and help them to collect data, analyze, and train students to understand how a scientist can explain what they are researching. The conventional teaching in chemistry lab processes is the learners to the use of various harmful chemical substances. So, a careful preparation for the experiments and substances for the
apparatus and substances. Experiments carried out conventionally in schools cannot be done individually because students are high cost of the materials (Allwright, 1991). Therefore, it is necessary to conduct research to determine the effectiveness of virtual laboratories as a substitute for traditional laboratories (Hawkins & Phelps, 2013). An interview survey carried out by the chemistry teacher in the pre-analysis stage revealed that the topic “chemical bonding” was the most difficult topic for the students.

One important aspect of 21st century skills is critical thinking skills. These skills always encourage students to behave scientifically in all their actions. However, in chemistry subjects there are many abstract materials so that students have difficulty thinking critically in solving problems. In addition, chemistry is also closely related to practicum which requires the scientific attitude of students. In order to help students, improve their imagination in thinking critically and getting used to being scientific, we need media that can facilitate students in understanding the concept. Therefore, it is necessary to develop 3D visualization media in the form of virtual reality.

To overcome these various problems in teaching and learning of chemistry, this study, which is designed for the development of a virtual reality laboratory integrated hybrid learning. Hybrid learning is learning that combines face-to-face and online phases (Zhao & Breslow, 2013) and as long as it is linked to internet, the latter component of the class can be done anywhere (Solikhin et al., 2018). Hybrid learning can make the learning atmosphere more interesting and interactive. In addition, students can also study online outside of school hours and anywhere. The attitude of students toward hybrid learning is very positive and they are generally satisfied with their learning experience (Antonoglou, 2011). This virtual reality laboratory also offers the students to relate their learning through real situations through the use of videos, which provide more meaningful and effective chemistry lessons. An effective way of simulating is preparation for laboratory activities (Rutten et al., 2012). Therefore, the general objective of this study was to develop a virtual reality and the main purpose of this study was to examine the effect of 3D visualization on students’ critical thinking skills and scientific attitude in chemistry.

METHOD
Research Design
This study used a Research and Development (R & D) method, specifically, the ADDIE model consists of five main stages: (1) analysis; (2) design; (3) develop; (4) implement; (5) and evaluate. The product of this development was a 3D visualization program based virtual reality in a chemical bonding practicum. In the implementation phase, 3D visualization media was tested in 3 classes with a quasi-experiment design. This design appears to be the most suitable for evaluating the effects of 3D visualization, because it was a comparison of teaching and learning processes between the virtual reality classroom, the conventional classroom using wet laboratory, and both of them on the same topic can be performed. This experiment was followed by a quasi-experimental design where there was two experimental group (EG-1 and EG-2) and one control group (CG). The procedures involved a treatment and a posttest. The stages of R&D - ADDIE model can be explained in Table 1.
Table 1
Stage of R&D – ADDIE Model

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>The initial needs analysis was done by gathering information and formulating a general description of the 3D visualization learning media that will be developed to suit the characteristics of the students.</td>
</tr>
<tr>
<td>Design</td>
<td>The design stages were in the form of product to design 3D visualization media and learning designs that will be applied in the classroom.</td>
</tr>
<tr>
<td>Develop</td>
<td>The development of 3D visualization products based virtual reality laboratories was validated by material experts and media experts.</td>
</tr>
<tr>
<td>Implement</td>
<td>The 3D visualization products were implemented to be tested for effectiveness.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>The evaluation phase was done by testing the quality of the product by senior high school teachers.</td>
</tr>
</tbody>
</table>

Participants

The research was conducted at a public senior high school in Gunungkidul, Yogyakarta, Indonesia. Participants in this study were from grade 10. For the purpose of this study, as many as 96 students (54 female and 42 male) were cluster randomly selected from a public senior high school in those regency. The average age of students was 15 years old. The samples were classified into three different classes, class CG, class EG-1, and class EG-2, each class consist 32 students.

Data Collection

The variable measured in this study was the student’s critical thinking skills and scientific attitude. The data of students’ critical thinking skills were collected through chemical bonding test and those of the data students’ scientific attitude was collected through questionnaire. Chemical bonding test consists 6 items of short essay and questionnaire consisting of 15 items. The questionnaire was adapted from those found in several books and journal articles on scientific attitude.

The chemical bonding test and scientific attitude questionnaire analysis were done by validity and reliability tests. Those chemical bonding test and scientific attitude questionnaire were validated theoretically and empirically. The theoretical validity was done by asking the expert judgment in terms of material, construction, and language from expert lecturer. The theoretical validity analysis was performed using Aikens’ V, formulated as follows (Aiken, 1985).

\[V = \frac{\sum s}{rn(c - 1)} \]

Note: \(s = r - lo; r = \) number of raters; \(lo = \) lowest validity score; \(c = \) highest validity score; \(r = \) number given by raters.

The calculation result of the Aiken’s V value compared with the value of the validity coefficient based on the interpretation guideline of uncorrected correlation coefficients in the predictive validity study (Emery & Bell, 2009) presented in Table 2.
Table 2
The Interpretation Guideline of Uncorrected Correlation Coefficients on Predictive Validity Study

<table>
<thead>
<tr>
<th>Validity Coefficient</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.35</td>
<td>Very useful</td>
</tr>
<tr>
<td>0.21 – 0.35</td>
<td>Useful</td>
</tr>
<tr>
<td>0.11 – 0.20</td>
<td>Depend on condition</td>
</tr>
<tr>
<td>< 0.11</td>
<td>Not useful</td>
</tr>
</tbody>
</table>

The item used very useful interpretation which has a value of Aiken’s V greater than the value of the validity coefficient of 0.35. The analysis result showed that all chemical bonding test and scientific attitude questionnaire have a validity coefficient > 0.35. So that, it can be said chemical bonding test and scientific attitude questionnaire were theoretically valid.

Furthermore, empirical validity was done by testing all chemical bonding test and scientific attitude questionnaire against the other students that not used as the samples in this study. A total of 264 students were obtained to test the chemical bonding test and 275 students were obtained to test the scientific attitude questionnaire. The QUEST program was used to conduct the empirical validity and reliability. The items are valid if infit mean square score was in the range of 0.77 to 1.33 and items have good reliability if the score equal to or more than 0.70. Based on the result of empirical validity analysis there were all items of chemical bonding test was valid, but 1 item of scientific attitude questionnaire not valid. In addition, the analysis results show a reliability estimate chemical bonding test of 0.82 and scientific attitude questionnaire of 0.84.

Data Analysis
Multivariate Analysis of Variance (MANOVA) was used for testing the data obtained in the study with all manova test requirements been carried out and the conditions fulfilled. Quality of 3D visualization media was analyzed by quantitative descriptive method. These scores then converted into an interval data scale. Furthermore, the data were classified into a category based on the ideal rating category and can be seen in Table 3.

Table 3
Ideal Rating Category

<table>
<thead>
<tr>
<th>Score</th>
<th>Range Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{X} > \bar{X} + 1.8 \text{ SBi}$</td>
<td>Excellent</td>
</tr>
<tr>
<td>$\bar{X} + 0.6 \text{ SBi} < \bar{X} \leq \bar{X} + 1.8 \text{ SBi}$</td>
<td>Good</td>
</tr>
<tr>
<td>$\bar{X} - 0.6 \text{ SBi} < \bar{X} \leq \bar{X} + 0.6 \text{ SBi}$</td>
<td>Good Enough</td>
</tr>
<tr>
<td>$\bar{X} - 1.8 \text{ SBi} < \bar{X} \leq \bar{X} - 0.6 \text{ SBi}$</td>
<td>Poor</td>
</tr>
<tr>
<td>$\bar{X} \leq \bar{X} - 1.8 \text{ SBi}$</td>
<td>Very Poor</td>
</tr>
</tbody>
</table>

Note: \bar{X} is empirical score; \bar{X}_i is average of ideal scores; SBi is ideal score of deviation.
FINDINGS AND DISCUSSION

Developing Process

The virtual reality may fail to meet learners’ needs if learning activities and tasks are designed inside an inappropriate pedagogical approach (Shih & Yang, 2008). Instructional designers or educators face the challenge of deploying features of virtual reality into their 3D visualization courses. One of the best-valued features of virtual reality was the ability of providing highly interactive learning experiences. Marker-based virtual reality application has been developed and computer hardware pieces were used as a teaching material. Before starting to develop a 3D visualization application, author researched existing tools and technologies in the field. It was decided on Blender and Unity tool which have good support and documentation. Blender is a program to build 3D object and unity is an ultimate game development platform to build high-quality 3D and 2D games. Key components used in the development process are given in Figure 1.

Figure 1
3D Visualization Based Virtual Reality Development Process

The virtual reality product development process using the Blender program that has been incorporated into the Unity program can be seen in Figure 2.

Figure 2
Virtual Reality Layout Design

Virtual reality products can be used using Android and are equipped with 3D glasses (oculus) and controllers. The results of developing 3D visualization final products based virtual reality laboratories can be seen in Figure 3 and the display of virtual reality laboratories with 3D glasses (oculus) can be seen in Figure 4.
The 3D full immersive virtual reality will elevate a learner’s interest and motivation compared with learning in a 2D animated environment (Limniou et al., 2008). Virtual reality (VR) can help students understand learning material in the learning process by observing and making observations. These observations create an impression of depth and imagination in students, so it’s easy to remember what has been done using VR.

Effect of 3D visualization on students’ critical thinking skills and scientific attitude

The chemical bonding test and scientific attitude questionnaire used in the study have been empirically validated and theoretically validated by examined by expert judgment. According to expert judgment the chemical bonding test and scientific attitude questionnaire were valid and suitable for use with some revision then empirically validated. The total number of students who completed this chemical bonding test was 264 and 275 students who completed the scientific attitude questionnaire. The QUEST program was used to conduct the empirical validity. The validity of fit item was more than 0.77 and less than 1.30. The empirical validity of chemical bonding test and scientific attitude questionnaire can be seen in Figure 5 and Figure 6.
Based on Figure 5 and Figure 6, all the chemical bonding test was valid, but in the scientific attitude questionnaire, among 15 items, there were 1 item that the expert considered unfit for inclusion. Because item number 13 was not valid, only 14 items of scientific attitude questionnaire were used.

The QUEST program also used to conduct the reliability test. The interpretation of reliability score of chemical bonding test and scientific attitude questionnaire can be seen in Figure 7.

Effect of 3D Visualization on Students’ Critical Thinking ...
The reliability of the chemical bonding test proved adequate ($\alpha=0.82$) and scientific attitude questionnaire proved adequate ($\alpha=0.84$). This reliability states that both of them have been reliable to use.

The 3D visualization media based virtual reality was implemented in 3 classes namely control group (CG) and experiment group (EG-1 and EG-2). Class CG conducts learning using wet laboratory, class EG-1 implements learning using a virtual reality laboratory integrated hybrid learning and class EG-2 carrying out learning using wet laboratory and virtual reality-based hybrid learning. From the results of the trials obtained the average value of critical thinking skills and scientific attitudes of the three classes. The comparison of students' critical thinking skills and scientific attitude in each class can be seen in Figure 8.

![Figure 8: The Comparison of Students' Critical Thinking Skills and Scientific Attitude](image)

Based on Figure 8, every class used in this study shows the results that students' critical thinking skills and scientific attitude for class EG-1 and class EG-2 higher than class CG. This was because in the class EG-1 and class EG-2 used virtual reality that can facilitate students to learn independently. The 3D visualization based virtual reality can be used as an independent learning sources and very flexible in the chemical bonding teaching-learning because it can be used anywhere and anytime.

The students' critical thinking skills and scientific attitude were analysed by MANOVA. Before carrying out the MANOVA analysis a prerequisite test was conducted in the form of a multivariate normality and covariance homogeneity test. The multivariate normality test was done by comparing the distance of the Mahalonobis (d_i^2) with the value of chi square (χ^2) for each group. Data was multivariate normally distributed if the scatter-plot graph tends to form a straight line or more than 50% the distance value of mahalanobis (d_i^2) is less or equal to the value of chi square (χ^2). The graph of the results of the multivariate normality test can be seen in Figure 9.
Based on Figure 9 it can be seen that the graph tends to form a straight line. This indicates that students' data of critical thinking and scientific attitude results of product testing were normally distributed.

Covariance matrix homogeneity test can be seen based on Box’s M. Data comes from populations that have a homogeneous covariance matrix if the significance value was more than 0.05. The result of the homogeneity test can be seen in Table 4.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Box’s M</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Thinking Skills and Scientific Attitude</td>
<td>9.702</td>
<td>1.567</td>
<td>6</td>
<td>215559.692</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Based on Box's M test results, the significance results are 0.152, this indicates that the three classes have the same covariance matrix.

MANOVA analysis based on Wilks' Lambda was used in this study because the sample consisted of more than two independent groups (Muijs, 2011) and manova assumptions were met (Hair et al., 2006). The results of MANOVA analysis can be seen in Table 5.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Significance</th>
<th>Decision Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks’ Lambda</td>
<td>0.000</td>
<td>Sig. < 0.05</td>
</tr>
</tbody>
</table>

As Table 5 shows, the sig. score was 0.000, less than α = 0.05. It can be concluded that at the 95% confident level there is a significant influence of the treatment on students’ critical thinking skills and scientific attitude. The presence of significant influence caused by different treatment in each class. This study confirms the 3D visualization has a positive effect on students' performance in hybrid learning. On the other hand, interactive learning by using simulations based virtual reality laboratory, where students.
become active in their learning, provide opportunities for students to construct and understand difficult concepts more easily (Demirci, 2003) and generally increase learning speed by allowing students to express their real reactions easily (Bajpai & Kumar, 2015). The 3D visualization helps to improve a student’s imagination by developing a student’s capacity to detect and follow near invisible cues. Barab et al. (2000) found that 3D virtual worlds are an effective tool to foster undergraduate students’ understanding of course contents. Students can repeat virtual reality simulations at home or anywhere according to their need so that they will form students’ critical thinking skills and scientific attitude.

The evaluation phase in this study was carried out by evaluating the quality of 3D visualization media in virtual reality. This assessment was carried out by 8 teachers of senior high school using media assessment instruments that have been validated by expert judgment. Assessment was divided into 3 main aspects, namely aspects of learning, material, and technique. Assessments from the teacher are then searched for averages and adjusted to the ideal rating category. The evaluation of the quality of 3D visualization media can be seen in Table 6.

Table 6

<table>
<thead>
<tr>
<th>Results of Quality Evaluation of 3D Visualization Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
</tr>
<tr>
<td>Learning</td>
</tr>
<tr>
<td>Suitability of the media with the student needs</td>
</tr>
<tr>
<td>Media supports the process of achieving learning goals</td>
</tr>
<tr>
<td>Learning support media using hybrid learning communication models</td>
</tr>
<tr>
<td>Media motivates and attracts the attention of students</td>
</tr>
<tr>
<td>Media helps the learning process</td>
</tr>
<tr>
<td>Visual media design matches the user</td>
</tr>
<tr>
<td>Media can stimulate students to do practicum</td>
</tr>
<tr>
<td>Media facilitates students to acquire new skills</td>
</tr>
<tr>
<td>Simulation of practical activities provides interactive learning opportunities</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>The concept of practicing chemical bonding is correct</td>
</tr>
<tr>
<td>Media content is accurate</td>
</tr>
<tr>
<td>Content in the media contains educational value</td>
</tr>
<tr>
<td>The content presented is easily understood by students</td>
</tr>
<tr>
<td>Content in the media is interrelated to clarify the delivery of information</td>
</tr>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>Use of proportional layouts</td>
</tr>
<tr>
<td>Display colors and background</td>
</tr>
<tr>
<td>The relevance of media to technology that is developing at this time</td>
</tr>
<tr>
<td>Ease of navigation</td>
</tr>
<tr>
<td>Accuracy of visualization</td>
</tr>
<tr>
<td>Suitability of 3D objects</td>
</tr>
<tr>
<td>Clarity of illustration</td>
</tr>
<tr>
<td>Media creativity and innovation</td>
</tr>
<tr>
<td>Average</td>
</tr>
</tbody>
</table>

The average assessment score for quality of 3D visualization was 3.733 in the "excellent" category. From these results it can be concluded that 3D visualization media
was suitable to be used in the learning process effectively and efficiently. This media can improve students’ critical thinking skills and scientific attitude well. Learning media such as 3D visualization have a positive influence in gaining learning experience, getting used to doing scientific attitudes, exercising imagination, increasing critical thinking skills, and improving learning outcomes (Barab et al., 2000; Higgins et al., 2014; Jabbour, 2014; Omilani et al., 2016).

The advantages of 3D visualization media include: this media can be used anytime and anywhere, helping users to visualize 3D objects, can avoid accidents in real laboratories, and users can interact directly with objects in virtual reality laboratory media. The disadvantage of 3D visualization media is this media can only be operated using a smartphone, while the computer can only display the simulation with the control of the smartphone. This is because the use of this media requires supporting devices, 3D glasses (oculus) and a controller.

CONCLUSION
The developed product of 3D visualization based on virtual reality showed that: (1) the 3D visualization media can be operated in Android with the help of 3D glasses (oculus) and controller, (2) students can use 3D visualization media both in the classroom and outside the classroom, (3) 3D visualization media effectively improved students’ critical thinking skills and scientific attitude, and (4) the quality of 3D visualization media was “excellent” category. Suggestions for the use of 3D visualization products based on the results of research and development is that the virtual reality media can be further developed with different chapter. In addition, this media can be used as classroom action research by chemistry teachers with other variable.

ACKNOWLEDGEMENT
Authors would like to thank to Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Indonesia for funding of this research with the contract No. 10/PenelitianTimPascasarjana/UN34.21/2018.

The authors declare that there is no conflict of interest.

REFERENCES

