

£ **Proceeding of the International Seminar on Science Education**

ISSN: 2476-9533

PROCEEDING International Seminar on Science Education

Nurturing Innovative and **Highly Literate Generation through Science Education**

techn

Semen Sido Mukii Motif of Yogyakarta Batik

October 29th 2016

PREFACE

Praise to Allah SWT for all the blessings and guidance given to us all, so that the program of the International Seminar on Science Education (ISSE) 2016 book with the topic about *Nurturing Innovative And Highly Literate Generation Through Science Education* which held on October 29th 2016 at Rectorate Hall, Yogyakarta State University can be completed successfully. This book comprises number of abstracts that have ben presented in the seminar, written by lecturers and students from Yogyakarta State University and other universities.

We owe many parties for the success of the seminar. Therefore, we would like to sincerely extend our gratitude to:

- 1. The rector of Yogyakarta State University, Prof. Dr. Rochmat Wahab, M.Pd., M.A. for facilitating all the activities of the International Seminar on Science Education (ISSE) 2015;
- 2. The director of Graduate School of Yogyakarta State University, Dr. Moch. Bruri Triyonofor providing all the facilities of the International Seminar on Science Education (ISSE) 2016;
- 3. The invited speakers for their willingness to share thoughts and insights on science teaching and learning in the seminar;
- 4. All committee members for the time, effort, and thoughts for the success of this activity; and
- 5. All presenters and participants who have come a long way to contribute to the success of the seminar.

However, we thruth fully understand that some imperfections might be find in this book and in the seminar. Thus, suggestions and constructive criticisms are very much welcome. Finally, we do hope that this book can bring some contributions for innovative and highly literate generation through science education.

Yogyakarta, Oktober 29th 2016

Chairperson

Dr. Heru Kuswanto, M.

Table of Contents

	Page
Preface	i
Table of Contents	ii
Needs Analysis of The Development of a Mini Laboratory Model in The Biochemistry Instruction	1
The Utilization of Subject Specific Pedagogy (SSP) Science to Optimize Mastery Knowledge Attitude and Skills Junior High School Students	8
Embedding Character Building Based On Local Wisdom In Biology Subject Materials	12
The Using Of Computer As A Tool For Physics Cognitive Assessment Test "Physicotest" In 21st Century	18
Chemistry Learning Module Development Based on Pedagogical Content Knowledge for Student Learning Independence	25
The Effect Of PBL & Inquiry On Student Science Process Skills At University Of Muhammadiyah Bengkulu	31
Authentic Assessment Of Problem Solving And Critical Thinking Skill For Improvement in Learning Physics	37
Implementation Of Pesantren Tadabbur Alam Ssg-Dt To Improve The Character "Baku" Student SMKN Pasundan 1 Bandung	43
Optimize The Increase Of Students' Conceptual Understanding By Learning At The Zone Of Proximal Development	52
Recitation Program Based On Multi Representation Needed to Increasing the Kinematics Conceptual Understading	60
Character Building Through The Integration Of Islamic Values In Biology Teaching And Learning	67
The Development Of Integrated Science To Optimize The Science Process Skills, Environment Care Attitude, And Conceptual Understanding	72
Development Of Students Textbook To Treat Complex Systems Reasoning Ability In Plant Structure Concept	77
Promoting Metacognition And Students' Care Attitude Towards The Environment Through Learning Physics With STEM	85
Quality Of Prospective Teacher's Argument With The Development Of Blended Learning Assisted Argueweb	89
ChemOnDro : Development of Android-Based Chemistry Instructional Media	95
The Analysis of Science Process Skills toward Students of Physics Education	99
The Analysis of Science Literacy Toward Chemistry Textbooks at the Eleventh Grade	108
Improving Science High Literacy Through Lifelong Learning Sets Based By Blanded Learning Using LMS	117
Integrated Module Based On The Geoheritage Of Nglanggeran Ancient Volcano To The Improvement Of Science Literacy And Care Attitude Of The Environment	123

ii

Creative thinking Process Capability student in Physics Problem Solving	129
Validity Learning Tool Prima For Higher- Order Thinking Skills Training And	132
Optimize Mastery Of Concept Students Of Biology	
Monitoring Card To Exercise Self Assessment Skill For Students	137
Strengthening the value of character through discipline science education In	141
Deletionship Detween Sector according Status And Mativation With Study	146
Achievements Of Students In Vocational School	140
The Effect Of Pbl On Critical Thinking Skill And Learning Achievement On	150
Physics Subject	
Survey On Metacognition Of Knowledge In Biology Of Learning Sman In Madiun City	160
Science Integrated Implementation Challenges in Different Countries and Various Effort to Solve Challenges	164
Android For The 21st Century Learning Media and its Impact Against Students	173
Differences In Students's Critical Thinking Skill Using Learning Model Of NHT With TPS	179
Characteristics of Teaching Material Construction Intermolecular interactions	182
Using Context Based Inkjet Printer Comparison of Pre-Conception students	
and Perspectives Scientist	
An Evaluation of Science Instruction Using Curriculum 2013 in Gunungkidul	191
Development Of Theecology Wetlandsmodule And Media Of Multimedia	197
Based Learning High School Classas XI As Conservationcaders	
The Development of Electrochemistry Module Using Guided Inquiry Approach	201
for Grade XII Senior High School Student of RSBI Program	
Android Based Mobile Learning as One of Instructional Media for Science Materials in The 21st Century	206
Development Of A Learning Model For Environmental Education At Ex-Situ	212
Sumatran Turtle Conservation Area	
Forming Quality Of Human Resource In Kompas "Caring Waste To Save City"	218
Through Science Education	~~~
Potential of STEM-Based Physics Learning In Improving Students Creative Thinking Skills	225
Innovation Of Teaching And Learning System Integreted In Reproduction	232
System Material Using "Among System" Method	202
Development Integrated Science Of Connected Model To Improve Science	239
Process Skill And Curiousity	
Developing Android-Based Chemistry Instructional Game To Improve The	246
Self Efficacy And Cognitive Achievement Of High School Students	
The Optimization Three Center Of Education For Establishing And	254
Developing Character Of Students In Learning Science	
Comparison of Learning Outcomes Psychomotor Physics Using The Video with Demonstration of Activities Practicum	260
Implementation of Maning Concept to Enhance Fourth Graders on Science	260
Subject in SDN Kebraon IV/565 Surabaya	200

iii

Enhancing Students' Environmental Awareness Trough Socio-Scientific Issues	276
Based Instruction In Teaching And Learning Biology	
The Role Of Scientific Investigations In Learning Physics With Multiple	283
Representation	
Development Learning Material On Theme Sindoro-Sumbing Mountain Slope	287
Conservation To Explore Problem Solving Skill	
An Inovation In Developing Biology Module With Laboratory Work Gudeline	294
And Worksheet For High School Students	
The Meta-Analysis Of Effectiveness Science Technology Society (Sts)	299
Approach Toward The Learning Achievement	
A Preliminary Validation Study of Developing An Interactive Multimedia	305
Modules in Physics Learning	
Practicality Of Learning Based On Three Scientific Questions (Model PBTPK)	311
Concept Of Students To Increase Critical Thinking Ability And Understanding	
Thermochemical	
Real Laboratory Based Learning Using Video Tracker on Terminal Velocity	319
Education Sexual Reproduction In Shifting Culture (A Literature Review)	324
An Evaluation of Applying ICT in the Implementation of Core Science	332
Learning	
Development Model of Outdoor Learning Based Local Wisdom in Physics	338
Learning	
Improving Scientific And Ecological Literacy Through Environmental	345
Education To Maintain Environmental Sustainability	
The Effect Of The Inquiry Approach Through 5E Learning Cycle On The	351
Science Process Skills	
Science Technology And Society Approach (STS) In Biology Learning Process	357
To Develop Science Process Skills And Social Skills Of Students	
Classroom Management In Science Education	362
Development Of Technological Pendagogical Content Nowledge- Based	370
Inquiry Lesson To Improve Student Scientific Reasoning	
Learning Physics with Analogy: Using Analogy to Develop Students' Creative	379
Thinking Skill	
Practicality Interpelasi Learning Model to Facilitate. Chemistry Students	387
Conceptual Change	
The Integration Of Mobile Learning And Local Wisdom To Enhance Students'	394
Problem Solving Ability	07.
The Implementation Of Sets Approach To Increase High Order Thinking Skill	399
(HOTS) In Learning Biology	077
Development Of Conceptual Attainment Student Worksheet To Improve	404
Cognitive And Psychomotor In Physic Instruction	101
Environmental Education Through Biology Learning For Ecosystem	410
Sustainability	110
An Evaluation Of The Implementation Of Problem Based Learning Model	414
Curriculum 2013 In Science Learning Junior High School Class VII In Sleman	
Multiple Representation for Physics Education: Repefit and challenge	420
manuple representation for raysies Education. Denotit and chanonge	.20

iv

Isolating and Testing of Jatropha multifida Extract toward Leukocytes as	428
Chemistry Learning Module	
Application ICT In Teaching Biology Through Perspectives Lecturers	436
Developing Worksheets Based on Scientific Creativity in Fundamental Physics	442
Course	
Enhancing Teachers' Information Communication Technology (ICT)	450
Competencies through Distance Training	
Using Integrated Assessment To Measure Students' Analytical Thinking And	456
Science Process Skills	
Instrument Test Physics-Based Computer Adaptive Test To Meet The Asian	461
Economic Community	
The Validity Of The Model-Assisted Instructional Scaffolding Analogies In	465
Science Teaching In Junior High School	
Student Character Building In Science Education Through Instad And Peer	472
Teaching Integrated Learning	
Development of Musschenbroek Bimetallic Viewer Tool to Identify Scientific	477
Attitude Junior High School Students of VII Grade	
Description of Problem Solving Ability Students In Physics Lesson	480
An instrument of the Implementation of Science Authentic Assessment in	484
Implementing Curriculum 2013	
Development Of Virtual Laboratory Circuit Builder For Enhancing Student	490
Mastery in Electrical Circuit	
Development of An Integrated Science Nontextbook Using Webbed Model	499
with Theme of Health	
The Application Of Character Education Of College Students Through	504
Academic Orientation (Ormik) And Student Activities	
A Model For Biology Teacher Education In Bengkulu: Developing Science	511
And Learning Research Capacity In Ex Situ Conservation Of Sumatran Turtles	
The Implementation of Problem Based Learning Model with Lesson Study	518
Based on Strategy	
The Development Of Problem Based Module On Evolution Topic By Using	524
Liang Bua Cave	
Optimazing Local Potential into Science Learning to Improve Science Process	529
Skills and Scientific Attitudes	

v

THE USING OF COMPUTER AS A TOOL FOR PHYSICS COGNITIVE ASSESSMENT TEST "PhysCoTest" IN 21st CENTURY

Intan Megawati¹, Farida Rahayu², Edi Istiyono³

^{1,2,3}Physics Education, Graduate Program, Yogyakarta State University, Yogyakarta, Indonesia ¹E-mail : Intan.megawati27@yahoo.com

Abstract- The purpose of this paper is to determine the important of cognitive test for student with assisted computer. Computer based test became one of the innovations in the world of education. Cognitive tests in physics learning as a benchmark for educators to know the extent ability of learners achieve competence contained in the curriculum. The use of computer in form of Computer Physics Test "PsyCoTest" as an alternative to prevent cheating and efficiency of scoring test. Basically "PhysCoTest" is part of the Computer Based Test which complement the Paper Based Test. "PhysCoTest" created using Macromedia Flash 8 application and system test is displayed random. Test validated using Item Response Theory (IRT) model, and then the cognitive tests were valid will be packaged into "PhysCoTest" and tested to learners. The use of "PhysCoTest" is important in cognitive tests to help educators and learners in time efficiency test and accuracy of the test results.

Keywords : Cognitive Test, Computer Based Test, PhysCoTest, Item Response Teory (IRT)

I. INTRODUCTION

Physics is one branch of science that studies the phenomena of nature through a series of scientific process. Learning physics oriented cognitive abilities, psychomotor and affective. Assessment of attitude and affective character more unique because it is directly related to the character of the students, so that the process of the assessment should also be through direct assessment, whereas for cognitive assessment with regard to the intelligence of the students followed the teaching and learning process, educators can more easily assess what has been accomplished participants learners through cognitive assessment tests using either the Paper Based test (PBT) or take advantage of technological developments by using Computer Based test (CBT). As the days turned out development Paper Based Test (PBT) have some weaknesses, so that the Computer Based Test (CBT) is presented as a complement to the assessment exercise.

Assessment at the level of cognitive domain of Bloom's Taxonomy consists of six categories consisting of Lower Order Thinking Skills (LOTS) include C1, C2 and C3 and Higher Order Thinking Skills (HOTS) include C4, C5 and C6. Taxonomy in education is a scheme for classifying the purpose of education, and standard of the end of a lesson [1]. Assessment can be seen as a tool used to measure learning outcomes, while generally vote seen as a way to determine the value, the extent to which students have achieved the objectives [2].

Tests are planned measurement tool used by educators to provide an opportunity for students to demonstrate achievement and its relation to predetermined objectives [3]. The variation in developing a written test, which is multiple choice, sentence completion, listing, true-false, matching, essay, and a modified form [4]. A cognitive tests created or developed based on Bloom's taxonomy, every aspect of the taxonomic level emphasizes the assessment of learning with many examples of test items (mostly multiple choice) is provided for each category. Teachers so easy to know at what level of knowledge the students).

In practice they are rarely teachers use computer assistance in the administration of the test, while the computer apart as an innovative learning media, can also be used as an effective media ratings. The use of computers in class assessments increasing the interest in assessment which resulted in finding potential varies

between learners [5]. This means that the use of computers in the assessment showed mixed results so that the possibility of the same test results among students to be minimal. Due to the inclusion of ICT in education, it is necessary to reconsider and rethink, modify or alter the traditional inspection methods. electronic assessment tool has reduced the burden on teachers and facilitates to conduct the examination [6]. Computer Based Test (CBT) has many advantages, among others, saving testing time, save costs, reduce cheating in tests, reduce errors in the assessment and feedback the results of the test can be quickly and accurately known [7].

Preparation of the test generally uses classical test theory (CTT = Classical Test Theory). But in the preparation of the cognitive tests used the modern theory of the Item Response Theory (IRT), wherein the preparation of the test does not depend on the sample tests so that the results of the preparation of the test is more accurate. (Hambleton, Swaminathan and Rogers: 2]. The preparation of the tests in modern equipped with presentation of the tests in the modern use of computer Based test (CBT) needs to be done, it is encouraging the process of testing more accurate and efficient. So the use of computers as tools of cognitive tests physics "computer physics test" (PhysCoTest) designed using Macromedia Flas 8, that of a random question shown. Consistent with these problems, this research is intended to: 1) obtain cognitive tests students.

II. LITERATURE REVIEW

Some of the theories that support the use of computer-related articles as an assessment tool physics cognitive tests include:

A. Assessment Cognitive Test

Principles of valuation and assessment standards emphasize two main ideas that should improve the assessment of learners and assessment is a valuable tool to make teaching decisions [8]. Assessment is not just a data collection learners, but also its processing to obtain a picture of the process and the learning outcomes of students. Dilakuukan assessment of teachers as a medium of reflection to determine what action to do next.

Assessment instruments are made must meet the cognitive, affective and psychomotor. During this time we already know the domain of Bloom's taxonomy, especially in the cognitive, usually in the realm of writing is written in C1 stands for cognitive stage of knowledge up to C6. Tests on the cognitive tests used to mengkur intelligence of learners in the learning process, measuring the extent to which understanding of the subject matter is acceptable learners, of cognitive domains are domains that include mental activity (brain) [9].

Bloom creates cognitive domain into six levels, later revised to Bloom's taxonomy revision. Taxonomy comparison of before and after the revision is shown as in Table 1.

Older Bloom's Taxonomy	Revised Bloom's Taxonomy
Knowledge	Remember
Comprehension	Understand
Application	Apply
Analysis	Analyzing
Synthesis	Evaluate
Evaluation	Create

TABLE 1. COMPARISON OF BLOOMS TAXONOMY BEFORE AND AFTER REVISIONS

But this time to design a test that is not focused on the skills of lower grade, Bloom's taxonomy revisions started to be used, thus analyzing, evaluating and creating including at high-level thinking skills. Test high-level thinking skills are also included into the cognitive tests that high-level cognitive tests. More clearly realm kogntif in bloom taxonomic revision is presented in Table 2.

The development phase good test as follows: 1) preparing test specifications, including: a) define test objectives, b) arrange grating tests, c) determine the test form and d) determine the length of the test, 2) writing test, 3) examine the test, 4) to test the test, 5) analyzing test items, 6) improvements in the assay, 7) assemble the test, 8) carry out tests and 9) to interpret the test results [10].

B. Computer Based Test (CBT)

The development of Information and Communication Technology (ICT) in teaching and learning has changed the paradigm of ratings [11] from the Paper Based Test (PBT) into a computer-based test that is usually called Computer Based Test (CBT). Bodmann & Robinson (2004), computer-based test offers several advantages over the traditional paper and pencil or paper-based, one of the benefits of CBT is the result of more accurate test and test results faster known student of the use of paper based test that requires a longer time correction.

Methods of using paper and pencil testing is already in a few years ago, but as the development of technology testing method is equipped with electronic media, namely computer. Computer Based Test (CBT). present to complete the lack of testing methods using paper and pencil. Computer Based Test (CBT) has many advantages, among others, saving testing time, save costs, reduce cheating in tests, reduce errors in the assessment and feedback the results of the test can be quickly and accurately known [7].

C. PhysCoTest

PhysCoTest is a product that contains material question banks Temperature and Heat . PhysCoTest created using Macromedia Flash 8. The system developed at PhysCoTest illustrated in Figure 1, PhysCoTest System Flow Diagram.

FIGURE 1. PHYSCOTEST SYSTEM FLOW DIAGRAM

III. RESEARCH METHODS

I. Model Development

The development model used is the 4-D, which includes four stages Define, Design, Development and Dissemination [13]. Figure 2 shows the flow development 4D.

II. Trial Design Products

Design of product trials in the study include two packages question the temperature and heat the material, design trial conducted through the stages of validation expert, empirical validation, initial field trials and field trials.

III. Subject Try

Two sets of instruments which have been revised based on input from experts and declared valid, then tested on 250 students of class X Senior High School in DIY.

IV. Data Collection Techniques

Data collection techniques include engineering tests and nontes. Mechanical tests are used to measure the ability to think critically, while nontes technique using a questionnaire to measure the effectiveness of adherence to PhysCoTest.

V. Data Analysis Techniques

Data collection instruments include the validation questionnaire consisting of a questionnaire item development instrument validation test, questionnaire validation PhysCoTest display, as well as the questionnaire responses of teachers and students of the enforceability of the provision of tests using PhysCoTest.

VI. Trial Design Products

Design of product trials in the study include two packages question the temperature and heat the material, design trial conducted through the stages of validation expert, empirical validation, initial field trials and field trials.

FIGURE 2. FLOW DEVELOPMENT 4D

VII. Subject Try

Two sets of instruments which have been revised based on input from experts and declared valid, then tested on 250 students of class X Senior High School in DIY.

VIII. Data Collection Techniques

Data collection techniques include engineering tests and nontes. Mechanical tests are used to measure the ability to think critically, while nontes technique using a questionnaire to measure the effectiveness of adherence to PhysCoTest.

IX. Data Analysis Techniques

Data collection instruments include the validation questionnaire consisting of a questionnaire item development instrument validation test, questionnaire validation PhysCoTest display, as well as the questionnaire responses of teachers and students of the enforceability of the provision of tests using PhysCoTest.

1) Instruments Validity

a) Content Validity

Expert validation questionnaire prepared by the interval scale of 1 to 4. Quantitative data is converted into qualitative data. Analysis of questionnaire data validation is performed by the following steps:

22

• The first step is to find the index V of Aiken [14] using the formula :

> $V = \frac{s}{n(c-1)}$ Information: Grading scale from I_0 to c I_0 = the smallest scale

- \vec{r} = from Io + 1 to $I_o + c 1$
- s = total s of n rater
- The second step is the index V Aiken each item questionnaire validity converted into qualitative data with V index ranges from 1 to 0. The validation results declared invalid if the index V Aiken has a value with a range> 0.8.

(1)

b) Empirical Validity

Test instruments that have been declared valid by the experts then tested empirically to learners. Grain tests analyzed using modern theory of Item Response Theory (IRT) model of Rasch (1 PL). Scoring test items using techniques Partial Credit Model (PCM) is a development of the model 1 OT and development of grain dichotomous Rasch model is applied to the grain politomi.

The results of empirical test data were analyzed using the Quest program has met unidimensional assumption test. Determination of criteria validity of each item on the Rasch model-based. Criteria declared invalid item (fit) criteria [15] validation of grain used in the study using the criteria infit mean square (MNSQ), with the criteria of 0.77 to 1.30. Validation whole grains developed by a mean value of INFIT Mean Square (Mean INFITMNSQ) and standard deviation or average value observed INFIT t (Mean INFIT t) and its standard deviation [16]. If the average INFIT MNSQ about 1.0 and 0.0 standard deviation or mean INFIT t approaching 0.0 and 1.0 standard deviation then the entire test fit with the model.

2) Instrumens Reliability

Reliability instrument performed with the help of Quest program, which the reliability test performed by reading the output of sh, the summary of case estimates the value of the reliability of the estimate indicates reliability. The value of the overall reliability of the instruments seen in the output data with the suffix tn, ie on the value of internal consistency.

Reliability Value	Interpretation of Reliability Value
>0,94	Excellent
0,91-0,94	Very good
0,81-0,90	Good
0,67-0,80	Enough
<0.67	Poor

TABEL 3. INTERPRETATION OF RELIABILITY VALUE WITH RASCH MODEL

a) The Level of Difficulty (b)

The level of difficulty (b) for each item is said to be good if the index lurch between -2.0 < b < 2.0 were analyzed using Parscale program.

b) Item Characteristic Curve (ICC)

Characteristics of the item indicated by the item characteristic curve (ICC) and the index of difficulty. To get the item characteristic curve (ICC) level of difficulty in each category using Parscale program.

c) The function of Information and SEM

Based on the analysis of the characteristics obtained item information functions and standard error of measurement (SEM). Based on information and SEM functions, then the test is suitable for learners with the ability of low, medium, or high.

3) The Effectiveness Test Using pyschotest

The development of effectivenesstest instruments using PhysCoTest performed by administering a questionnaire on PhysCoTest Teachers. Results of Teachers and students responses were analyzed descriptively. Data analysis was performed by calculating the scores achieved from all aspects assessed [17], is then calculated by the following formula:

 $N = \frac{k}{Nk} x \ 100\% \tag{2}$

N = Percentage feasibility aspects

K = Scores on data collection

Nk = Total scores on the data collection

Scores are compared to Table 3 to determine the response criteria teachers and students in applying PhysCoTest.

Interval Criteria	Criteria Conversion
86 % ≤N < 100%	Very Effective
$72\% \le N < 85\%$	Effective
58 % ≤N <71 %	Quite Effective
44 % ≤N <57%	Ineffective
$N \le 44 \%$	Very Ineffective

TABLE 3. RESPONSE SCORE INTERPRETATION TEACHERS AND STUDENTS

AC KNO WLEDGMENT

We would like to thank Dr. Edi Istiyono, M.Si as supervising the course of this study.

REFERENCE

- [1] D. R. Krathwohl, "A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice Paper-Pencil Tests", Journal of Educational Computing Research, vol. 31(1), pp. 51-60, <u>http://dx.doi.org/10.1207/s15430421tip4104_2</u>, 2010.
- [2] G. Van de Watering, *et al.*, "Students' assessment Preferences, Perceptions of Assessment and Their Relationship to Study Results". High Education, vol. 56, pp. 645-658, 2008.
- [3] J. C. Changelosi, Merancang Tes untuk Menilai Prestasi Siswa. Penerbit ITB: Bandung, 1995.
- [4] J. L. Scott, Improving Vocational Curriculum: Cognitive achievement evaluation. The Goodheart-Wilcox Company, Inc : Illinois, 1993.
- [5] H. Michael Hopson, L. Richard Simms, and G. A. Knezek, "Using a Technology-Enriched Environment to Improve Higher-Order Thinking Skills". Journal of research on technology in education, 2016.
- [6] Jamila, Mubashrah., Tariqb, and P. A. Shami, "Computer Based Vs Paper Based Examinations: Perceptions of University Teachers". The Turkish Online Journal of Educational Technology, vol. 11, 2012.
- [7] M. F. Termitayo, A. A. Adebisi, and O. O. Alice, "Computer Based Test (CBT) System For University Academic Enterprise Examination". International Journal of Scientific & Technology Research, vol. 2, 2013.
- [8] J. A. Van de Walle, Elementary and Middle Schoolmathematics: Teaching Developmentally, Sixth Edition, United States of America: Pearson Education, Inc, 2007.
- [9] A. Sudijono, Pengantar Evaluasi Pendidikan. PT Raja Grafindo Persada: Jakarta, 1996.
- [10] M. Djemari, Pengukuran, Penilaian dan Evaluasi Pendidikan. Nuha Medika: Yogyakarta, 2012.
- [11] O. Uysal, and A. Kuzu, "A Thesis Proposal: Quality Standards of Online Higher Education in Turkey". Internationalization and the Role of University Networks. Proceedings of the 2009 EMUNI Conference on Higher Education and Research, Potorož, Sloven ia, 2009.
- [12] S. M. Bodmann, and D. H. Robinson, Speed and Performance Differences among Computer-Based and, 2004.
- [13] S. Thiagarajan, D. S. Semmel, and M. I. Semmel, Instructional Development for Training Teachers of Expectional Children, Minneapolis. Leadership Training Institute/Special Education, University of Minnesota : Minnesota, 1994.
- [14] D. N. Kowsalya, *et al.*, "Development and validation of a scale to asses self concept in mild intellecctually disabled children". International Journal Soc. Sci & Education, 2012.
- [15] B. Sumintono, and W. Widhiarso, Rasch Model Metode Pengukuran Modern Dalam Ilmu-Ilmu Social. Trim Komunikata publishing House : Cimahi, 2009.
- [16] R. J. Adams, and S. T. Khoo, Quest: The Interactive Test Analisys System Version 2.1. The Australian Council For Education al Research: Victoria, 1996.

24

[17] N. Purwanto, Prinsip-Prinsip dan Teknik Evaluasi Pengajaran. PT. Remaja Rosdakarya : Bandung, 2010.