KARAKTERISASI LAPIAN TIPIS CADMIUM SULFIDA (CdS) HASIL PREPARASI DENGAN TEKNIK CLOSE SPACED VAPOR TRANSPORT (CSVT) UNTUK APLIKASI SEL SURYA

Ariswan
Jurdik Fisika FMIPA Universitas Negeri Yogyakarta

Abstrak

Kata kunci: Cadmium Sulfida(CdS), teknik preparasi CSVT, sel surya

PENDAHULUAN
generasi ini sel surya berbentuk polimer (sel surya organik) dan sel surya foto-elektronika. Sel surya organik dibuat dari bahan semikonduktor organik seperti polyphenylene vinylene dan fullerene. Sedangkan sel surya photokimia merupakan jenis sel surya eksiton yang terdiri dari sebuah lapisan partikel nano (biasanya titanium dioksida) yang di endapkan dalam sebuah perendam (dye). Termasuk sel surya generasi ketiga adalah sistem tandem yaitu sel surya terdiri dari beberapa lapisan dengan energy gap yang berbeda dimulai dari energi gal paling besar ke energi gap paling kecil dan lapisan terakhir adalah substrat. Tujuannya agar serapan energi surya meningkat dan efisiensi meningkat hingga dapat mencapai 40 % (James E. Rannels, 2001).

Sel surya generasi kedua yang sampai sekarang terus dikembangkan adalah sel surya berbahan Cadmium Tellurida (CdTe), Cadmium Sulfdia (CdS), dan Cadmium Selenida (CdSe). CdTe adalah bahan semikonduktor tipe p, sedangkan kedua lainnya merupakan semikonduktor bertipe n. Beberapa penelitian telah dilakukan untuk preparasi CdS dan CdTe dengan berbagai teknik preparasi misalnya teknik electrodeposition (Barker, 1992), Chemical Vapor Deposition (Wu X, 2004), dan lain-lain. Alasan pokok riset sel surya jenis ini adalah bahan baku yang mudah diperoleh, dalam sekala riset dapat dilakukan di laboratorium, dan teknik preparasinya dapat dilakukan dengan berbagai teknik untuk memperoleh kualitas yang diharapkan. Realisasi sel surya berbahan dasar CdTe dan CdS seperti tampak pada gambar 1. (Romeo (2010))

<table>
<thead>
<tr>
<th>Kontak Belakang Cu+Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lapisan Penyerap CdTe-type p</td>
</tr>
<tr>
<td>Lapisan Cendela CdS-type n</td>
</tr>
<tr>
<td>Kontak Depan (transparan)</td>
</tr>
<tr>
<td>Substrat kaca</td>
</tr>
</tbody>
</table>

Gambar 1. Susunan sel surya CdTe-CdS dalam bentuk susunan superstrate

METODE PENELITIAN
Preparasi bahan dilakukan dengan teknik Close Spaced Vapour Transport (CSV). Metode CSV merupakan modifikasi khusus untuk metode transfer uap yang masih dapat digolongkan dalam jenis depositions lapisan tips secara kimia atau dikenal dengan Chemical Vapour Deposition (CVD). Pada metode CVD konvensional, bahan semikonduktor dideposisi dalam bentuk uap senyawa semikonduktor dengan bahan organik/halogen yang akan terdekomposisi dan terdeposisi pada substrat. Pada metode CSV, substrat dilekatkan di atas sumber dengan dihiasi jarak penambang (spacer). Metode ini menekankan kekuatan jarak antara sumber dengan substrat agar uap yang berasal dari sumber dapat sebanyak mungkin terdeposisi pada substrat. Kedekatan jarak antara sumber dengan substrat merupakan hal yang sangat penting pada metode ini karena kondisi hampa yang digunakan tidak terlalu tinggi sehingga jarak tersebut diharapkan tidak terlalu jauh dari jarak bebas rata-rata molekul gas.

Gambar 2. Skema Alat Close Space Vapour Transport (CSVT)

HASIL DAN PEMBAHASAN
Preparasi Lapisan Tipis CdS dengan teknik CSVT menghasilkan sejumlah sampel dan dikarakterisasi untuk mengetahui struktur kristal, komposisi kimia dan morfologi permukaan serta sifat optik dari sampel CdS hasil preparasi tersebut.

Analisis XRD
XRD (X-Ray Diffraction) dipergunakan untuk mengetahui struktur parameter kristal yang terbentuk pada substrat yaitu berupa lapisan tipis. Data yang dihasilkan berupa difraktogram, yaitu grafik hubungan antara intensitas puncak (I) dan sudut difraksi (2θ).

Analisis menggunakan XRD dilakukan pada salah satu sampel dengan jarak penyanga (spacer) 3 mm, hasilnya seperti ditunjukkan pada gambar 3 berikut ini.
Gambar 3. Difraktogram lapisan tipis CdS hasil preparasi dengan teknik CSVT

<table>
<thead>
<tr>
<th>Peak</th>
<th>2θ (derajat)</th>
<th>I_{relatif}</th>
<th>2θ (derajat)</th>
<th>I_{relatif}</th>
<th>hkl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.8396</td>
<td>20</td>
<td>24.828</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>26.3925</td>
<td>72</td>
<td>26.449</td>
<td>60</td>
<td>002</td>
</tr>
<tr>
<td>3</td>
<td>35.8743</td>
<td>5</td>
<td>36.648</td>
<td>25</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>43.0036</td>
<td>20</td>
<td>43.735</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>48.0036</td>
<td>28</td>
<td>48.144</td>
<td>40</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>53.9800</td>
<td>5</td>
<td>54.614</td>
<td>4</td>
<td>004</td>
</tr>
<tr>
<td>7</td>
<td>68.7014</td>
<td>5</td>
<td>69.366</td>
<td>6</td>
<td>210</td>
</tr>
</tbody>
</table>
Berdasarkan data-data tersebut harga konstanta kisi dari kristal yang terbentuk dapat dicari dengan metode analitik (J.C. Suryanarayana, 1998). Hasilnya menunjukkan bahwa sampel lapisan tipis memiliki struktur Heksagonal dengan parameter kisi \(a = b = 4.188 \) Å dan \(c = 6.605 \) Å. Hasil ini hampir sama dengan data JCPDS dengan besar parameter kisi berturut-turut \(a = 4.136 \) Å dan \(c = 6.605 \) Å.

Analisis EDAX

![Gambar 4. Hasil spektrum karakterisasi EDAX lapisan tipis CdS hasil preparasi dengan teknik CSVT](image)

Hasil karakterisasi EDAX untuk lapisan tipis CdS hasil preparasi dengan teknik CSVT memberikan hasil persentase komposisi kimia yang terbentuk yaitu S: 1,62% massa Cd: 98,38% massa. Hasil persentasi dalam massa berkaitan dengan perbandingan dalam molaritas dan tampak bahwa unsur Cd dan S dengan perbandingan molaritas 94,53 dan 5,47. Perbandingan molaritas tersebut dapat dinyatakan dalam senyawa hasil preparasi memiliki komposisi kimia menjadi CdS\(_{0,96}\).
Hasil EDAX menunjukkan bahwa sampel sangat kaya Cadmium atau sebaliknya sangat miskin Sulfur. Hal ini bisa terjadi pemilihan suhu yang tidak sesuai. Oleh karena riset terus dilakukan sampai pada hasil sesuai dengan harapan yaitu komposisi kimia yang mendekati ideal 50% Cadmium dan 50 % sulfur.

Analisis SEM

Gambar 5. Hasil pemotretan permukaan lapisan tipis CdS perbesaran 6000 kali

Dari hasil foto SEM dengan perbesaran 6000 kali tampak bahwa lapisan tipis CdS yang dipreparasi dengan teknik CVD terbentuk dari kristal yang tersebar secara homogen pada permukaan sampel. Kehomogenan ini ditunjukkan dari warna kristal yang hampir seragam dan bentuk permukaan lapisan tipis yang homogen disetiap bagianya. Ukuran butiran (grain) berbentuk batah dengan panjang sekitar 40 μm, ketebalan penampang lintang sebesar 1 μm.

Sifat Optik Lapisan Tipis CdS
Gambar 6. Grafik hubungan antara Transmitansi sebagai fungsi panjang gelombang foton yang dikenakan pada sampel

Gambar 6 merupakan hasil dari pengujian menggunakan spektrofotometer UV-Vis pada daerah dengan panjang gelombang antara 400 nm dan 1000 nm atau transmitansi diukur pada panjang gelombang ultra violet (UV) sampai dengan cahaya tampak. Spektrum hasil tersebut dapat dilihat bahwa lapisan tipis yang dihasilkan mulai dapat meneruskan cahaya pada daerah cahaya tampak yaitu pada daerah panjang gelombang 400 nm kemudian naik secara tajam dan mendekati konstanta pada cahaya dengan panjang gelombang di atas 600 nm. Sifat ini berkaitan dengan kualitas kristal lapisan tipis CdS. Secara umum transmisi berlangsung pada panjang gelombang dan ketebalan lapisan tipis CdS. Energi gap yang di dapat yaitu 2.4 eV. Transmitansi diukur pada panjang gelombang ultra violet (UV) sampai dengan cahaya tampak.

KESIMPULAN
Berdasarkan hasil penelitian dan pembahasan maka dapat disimpulkan bahwa:
1. Lapisan tipis CdS telah diperoleh dengan teknik Close Spaced Vapour Transport (CSVT).
 Lapisan tipis CdS berbentuk polikristal dengan struktur Heksagonal dengan parameter kisi berturut-turut $a = 4.188$ A, dan $c = 6.605$ A
2. Hasil lapisan tipis adalah non stoichiometri dengan komposisi sangat kaya atom atom Cadmium dalam perbandingan molaritas dapat ditulis sebagai Cd$_{0.06}$S. Morfologi permukaan berwarna homogen dan terbentuk kristal dengan butiran berbentuk batang dengan panjang sekitar 40 mm.
3. Hasil pengukuran energi gap E_g dengan teknik UV - VIS Spectroscopy pada suhu kamar (300 K) adalah sebesar 2.4 eV.
UCAPAN TERIMA KASIH

DAFTAR PUSTAKA

Contreras M, B. Egaas, K. Ramanathan, Prog. Photovoltaic 7 1999 p. 311

Romeo N, A. Bosio, A. Romeo, Solar Energy Materials & Solar Cells, 94 2010 p.2-7

<table>
<thead>
<tr>
<th>PRIMARY SOURCES</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. edoc.site</td>
<td>8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. anzdoc.com</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. geografimusik.blogspot.com</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. www.hfi-diyjateng.or.id</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. www.len.co.id</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. fr.scribd.com</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. www.airitilibrary.com</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL GRADE</td>
<td>GENERAL COMMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/100</td>
<td>Instructor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>