

# YOGYAKARTA STATE UNIVERSITY FAKULTY OF MATHEMATICS AND NATURAL SICENCE

#### **SYLLABI**

Faculty : Matematic and Natural Science

Program : Physics Education

Course/Code : Electricity and Magnetism/FIC.319

Credits : Theory = 3 sks, Practice = -Smester : 3<sup>th</sup> (in physics), 4<sup>th</sup> (physics)-

Prerequisite/Code : Lecturer :

## I. Course Description

The subject discusses some electricity and magnetism concepts i.e : Coulomb law, the electric field, Gauss's law, electric potensial, special techniques in electrostatics, multipoles expansion, electrostatic field in matter, magnetostatics, magnetostatics field in matter.

# II. Course Standard Competence

Student are able to understand and application the electric and magnetic concepts in daily problems.

# III. Activities

| Meeting                           | Basic Compotence                                | Essential Concept                                                            | Learning<br>Strategy                     | Learning material | Character                                                             |
|-----------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|-------------------|-----------------------------------------------------------------------|
| 1 <sup>th</sup>                   | To understand the vector analysis               | Vector Algebra,<br>The Vector<br>Differential<br>Operator                    | Presentation,<br>discussion,<br>exercise | A, C              | Responsible, thinking                                                 |
| 2 <sup>th</sup>                   | To understand the development of electrostatics | Point charge,<br>Coulomb Law,<br>continuous charge<br>system                 | Presentation,<br>discussion,<br>exercise | A,B, C            | Confindent, complying, appreciating                                   |
| 3 <sup>th</sup>                   | To understand the Electric Field                | Electric field of<br>point charge,<br>Electric field of<br>continuous charge | Presentation, discussion, exercise       | A, B, C           | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively |
| 4 <sup>th</sup>                   | To understand the Gauss's Law                   | Electric flux, Derivation Gauss Law, Application of Gauss's Law              | Presentation,<br>discussion,<br>exercise | A, C              | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively |
| 5 <sup>th</sup> , 6 <sup>th</sup> | To understand the energy and electric           | Work done on moving a point                                                  | Presentation, discussion,                | A, B              | Responsible, thinking,                                                |

|                                                              | potential of charge<br>system                                   | charge, Electric Potential energy, Potential of a point charge, Potential of a charge distribution, Energy in Static electric fields, Capasitor, Energy stored in capacitor | exercise                                 |         | logically,<br>creatively,<br>inovatively,<br>dicipline                              |
|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-------------------------------------------------------------------------------------|
| 7 <sup>th</sup>                                              | To understand the electric multipoles                           | The Multipole Expantion of scalar Potential, The Electric Dipole Field                                                                                                      | Presentation,<br>discussion,<br>exercise | A, C    | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |
| 8 <sup>th</sup>                                              | To understand the special techniques for calculating potentials | Laplace's Equation in one dimention, Laplace's Equation in two dimention, Boundary conditions and Uniqueness theorems, Separation of Variabel Methode                       | Presentation,<br>discussion,<br>exercise | A, C    | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |
| 9 <sup>th</sup><br>10 <sup>th</sup>                          | Mid Term  To understand the Electric Current                    | Current and Current densities, Ohm's law, Power and Joule's Law, Dielectric, Conductor, semi conductor, The equation of continuity                                          | Presentation,<br>discussion,<br>exercise | A, B, C | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |
| 11 <sup>th</sup>                                             | To understand the Electrostatic fields in matter                | Polarization, Electric displacement, linear dielectrics                                                                                                                     | Presentation,<br>discussion,<br>exercise | A, B    | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |
| 12 <sup>th</sup> ,<br>13 <sup>th</sup> ,<br>14 <sup>th</sup> | To understand<br>Magnetostatic                                  | Definition of Magnetic induction, Magnetic Force on a moving charge, Motion of a charge in magnetic field, Magnetic force on                                                | Presentation,<br>discussion,<br>exercise | A, B, C | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |

| 15 <sup>th</sup> | Township                                    | electric current, Magnetic field Produced by closed current, Ampere's law | Proventsting                             | A P. C  | D                                                                                   |
|------------------|---------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|---------|-------------------------------------------------------------------------------------|
|                  | To understand the electromagnetic Induction | Faraday's Law, Mutual Inductance, Self Iduction, Energy in magnetic field | Presentation,<br>discussion,<br>exercise | A, B, C | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |
| 16 <sup>th</sup> | To understand magnetostatic in matter       | Magnetization, Field of magnetized object, Field H                        | Presentation,<br>discussion,<br>exercise | A, C    | Responsible,<br>thinking,<br>logically,<br>creatively,<br>inovatively,<br>dicipline |

### IV. Reference

- A. D.J. Griffith, 1995, *Introduction to Electrodynamics*, Second edition, New Delhi Prentice-Hill of India Privite Limited
- B. JR. Reitz & FJ. Milford, 1990 *Foundation of Electromagnetics Theory*, Third edition, California, Addisson-Wesley Publishing Company Reading Massachusetts Menlo Park California
- C. Roald K. Wangsness,1979, *Electromagnetic Fields*,2<sup>nd</sup> edition, New York, John Wiley &Sons, Inc

## V. Assessment

| No | Component              | Weight (%) |  |
|----|------------------------|------------|--|
| 1. | In-Class Participation | 10%        |  |
| 2. | Assignments            | 40%        |  |
| 3. | Mid-Term Exam          | 25%        |  |
| 4. | Final Exam             | 25%        |  |
|    | Total                  | 100%       |  |

Yogyakarta, November 30<sup>th</sup> 2013

Validator

Yusman W, M.Si NIP.196807121993031004 Suyoso, M.Si NIP.195306101982031003